### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
new(free(x)) →+ free(new(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position .
The pumping substitution is [x / free(x)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
top1, top2, check, new, old

They will be analysed ascendingly in the following order:
top1 = top2
check < top1
new < top1
check < top2
new < top2
new < check
old < check

### (8) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

The following defined symbols remain to be analysed:
new, top1, top2, check, old

They will be analysed ascendingly in the following order:
top1 = top2
check < top1
new < top1
check < top2
new < top2
new < check
old < check

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)

Induction Base:
new(gen_free:serve3_0(0)) →RΩ(1)
free(serve)

Induction Step:
new(gen_free:serve3_0(+(n5_0, 1))) →RΩ(1)
free(new(gen_free:serve3_0(n5_0))) →IH
free(gen_free:serve3_0(+(1, c6_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

The following defined symbols remain to be analysed:
old, top1, top2, check

They will be analysed ascendingly in the following order:
top1 = top2
check < top1
check < top2
old < check

### (12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
old(gen_free:serve3_0(n222_0)) → gen_free:serve3_0(+(1, n222_0)), rt ∈ Ω(1 + n2220)

Induction Base:
old(gen_free:serve3_0(0)) →RΩ(1)
free(serve)

Induction Step:
old(gen_free:serve3_0(+(n222_0, 1))) →RΩ(1)
free(old(gen_free:serve3_0(n222_0))) →IH
free(gen_free:serve3_0(+(1, c223_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (14) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n222_0)) → gen_free:serve3_0(+(1, n222_0)), rt ∈ Ω(1 + n2220)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

The following defined symbols remain to be analysed:
check, top1, top2

They will be analysed ascendingly in the following order:
top1 = top2
check < top1
check < top2

### (15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
check(gen_free:serve3_0(+(1, n443_0))) → *4_0, rt ∈ Ω(n4430)

Induction Base:
check(gen_free:serve3_0(+(1, 0)))

Induction Step:
check(gen_free:serve3_0(+(1, +(n443_0, 1)))) →RΩ(1)
free(check(gen_free:serve3_0(+(1, n443_0)))) →IH
free(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (17) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n222_0)) → gen_free:serve3_0(+(1, n222_0)), rt ∈ Ω(1 + n2220)
check(gen_free:serve3_0(+(1, n443_0))) → *4_0, rt ∈ Ω(n4430)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

The following defined symbols remain to be analysed:
top2, top1

They will be analysed ascendingly in the following order:
top1 = top2

### (18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top2.

### (19) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n222_0)) → gen_free:serve3_0(+(1, n222_0)), rt ∈ Ω(1 + n2220)
check(gen_free:serve3_0(+(1, n443_0))) → *4_0, rt ∈ Ω(n4430)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

The following defined symbols remain to be analysed:
top1

They will be analysed ascendingly in the following order:
top1 = top2

### (20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top1.

### (21) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n222_0)) → gen_free:serve3_0(+(1, n222_0)), rt ∈ Ω(1 + n2220)
check(gen_free:serve3_0(+(1, n443_0))) → *4_0, rt ∈ Ω(n4430)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

No more defined symbols left to analyse.

### (22) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)

### (24) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n222_0)) → gen_free:serve3_0(+(1, n222_0)), rt ∈ Ω(1 + n2220)
check(gen_free:serve3_0(+(1, n443_0))) → *4_0, rt ∈ Ω(n4430)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

No more defined symbols left to analyse.

### (25) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)

### (27) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n222_0)) → gen_free:serve3_0(+(1, n222_0)), rt ∈ Ω(1 + n2220)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

No more defined symbols left to analyse.

### (28) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)

### (30) Obligation:

TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve

Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))

No more defined symbols left to analyse.

### (31) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)