(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, y, mark(z)) →+ mark(f(x, y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [z / mark(z)].
The result substitution is [ ].

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

S is empty.
Rewrite Strategy: FULL

(5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
m/0

(6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

S is empty.
Rewrite Strategy: FULL

Infered types.

(8) Obligation:

TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok

(9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, f, proper, top

They will be analysed ascendingly in the following order:
f < active
active < top
f < proper
proper < top

(10) Obligation:

TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok

Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))

The following defined symbols remain to be analysed:
f, active, proper, top

They will be analysed ascendingly in the following order:
f < active
active < top
f < proper
proper < top

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Induction Base:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, 0)))

Induction Step:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, +(n5_0, 1)))) →RΩ(1)
mark(f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Obligation:

TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok

Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(15) Obligation:

TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok

Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(17) Obligation:

TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok

Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))

The following defined symbols remain to be analysed:
top

(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(19) Obligation:

TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok

Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(22) Obligation:

TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok

Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)