### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
plus(s(x), y) →+ s(plus(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

S is empty.
Rewrite Strategy: FULL

Infered types.

### (6) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

### (7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
plus, times, div, quot, eq, pr

They will be analysed ascendingly in the following order:
plus < times
times < div
div = quot

### (8) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
plus, times, div, quot, eq, pr

They will be analysed ascendingly in the following order:
plus < times
times < div
div = quot

### (9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)

Induction Base:
plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) →RΩ(1)
gen_s:0'3_0(a)

Induction Step:
plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
s(plus(gen_s:0'3_0(a), p(s(gen_s:0'3_0(n5_0))))) →RΩ(1)
s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0))) →IH
s(gen_s:0'3_0(+(a, c6_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (11) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
times, div, quot, eq, pr

They will be analysed ascendingly in the following order:
times < div
div = quot

### (12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)

Induction Base:
times(gen_s:0'3_0(0), gen_s:0'3_0(b)) →RΩ(1)
0'

Induction Step:
times(gen_s:0'3_0(+(n854_0, 1)), gen_s:0'3_0(b)) →RΩ(1)
plus(gen_s:0'3_0(b), times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b))) →IH
plus(gen_s:0'3_0(b), gen_s:0'3_0(*(c855_0, b))) →LΩ(1 + b·n8540)
gen_s:0'3_0(+(*(n854_0, b), b))

We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).

### (14) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
eq, div, quot, pr

They will be analysed ascendingly in the following order:
div = quot

### (15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)

Induction Base:
eq(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true

Induction Step:
eq(gen_s:0'3_0(+(n1961_0, 1)), gen_s:0'3_0(+(n1961_0, 1))) →RΩ(1)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (17) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
pr, div, quot

They will be analysed ascendingly in the following order:
div = quot

### (18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol pr.

### (19) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
quot, div

They will be analysed ascendingly in the following order:
div = quot

### (20) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
quot(gen_s:0'3_0(n2682_0), gen_s:0'3_0(+(1, n2682_0)), gen_s:0'3_0(c)) → gen_s:0'3_0(0), rt ∈ Ω(1 + n26820)

Induction Base:
quot(gen_s:0'3_0(0), gen_s:0'3_0(+(1, 0)), gen_s:0'3_0(c)) →RΩ(1)
0'

Induction Step:
quot(gen_s:0'3_0(+(n2682_0, 1)), gen_s:0'3_0(+(1, +(n2682_0, 1))), gen_s:0'3_0(c)) →RΩ(1)
quot(gen_s:0'3_0(n2682_0), gen_s:0'3_0(+(1, n2682_0)), gen_s:0'3_0(c)) →IH
gen_s:0'3_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (22) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
quot(gen_s:0'3_0(n2682_0), gen_s:0'3_0(+(1, n2682_0)), gen_s:0'3_0(c)) → gen_s:0'3_0(0), rt ∈ Ω(1 + n26820)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
div

They will be analysed ascendingly in the following order:
div = quot

### (23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol div.

### (24) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
quot(gen_s:0'3_0(n2682_0), gen_s:0'3_0(+(1, n2682_0)), gen_s:0'3_0(c)) → gen_s:0'3_0(0), rt ∈ Ω(1 + n26820)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

### (25) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)

### (27) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
quot(gen_s:0'3_0(n2682_0), gen_s:0'3_0(+(1, n2682_0)), gen_s:0'3_0(c)) → gen_s:0'3_0(0), rt ∈ Ω(1 + n26820)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

### (28) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)

### (30) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

### (31) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)

### (33) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

### (34) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)

### (36) Obligation:

TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

### (37) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)