0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 17 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 125 ms)
↳12 CdtProblem
↳13 CdtKnowledgeProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 14 ms)
↳16 CdtProblem
↳17 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 82 ms)
↳18 CdtProblem
↳19 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳20 BOUNDS(1, 1)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
plus(s(x), y) → s(plus(x, y))
times(s(x), y) → plus(y, times(x, y))
quot(x, 0, s(z)) → s(div(x, s(z)))
plus(x, 0) → x
plus(0, y) → y
div(0, y) → 0
div(x, y) → quot(x, y, y)
times(s(0), y) → y
quot(s(x), s(y), z) → quot(x, y, z)
times(0, y) → 0
quot(0, s(y), z) → 0
The duplicating contexts are:
times(s(x), [])
div(x, [])
The defined contexts are:
plus(x0, [])
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
plus(s(x), y) → s(plus(x, y))
times(s(x), y) → plus(y, times(x, y))
quot(x, 0, s(z)) → s(div(x, s(z)))
plus(x, 0) → x
plus(0, y) → y
div(0, y) → 0
div(x, y) → quot(x, y, y)
times(s(0), y) → y
quot(s(x), s(y), z) → quot(x, y, z)
times(0, y) → 0
quot(0, s(y), z) → 0
Tuples:
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
quot(z0, 0, s(z1)) → s(div(z0, s(z1)))
quot(s(z0), s(z1), z2) → quot(z0, z1, z2)
quot(0, s(z0), z1) → 0
div(0, z0) → 0
div(z0, z1) → quot(z0, z1, z1)
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
PLUS(z0, 0) → c1
PLUS(0, z0) → c2
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
TIMES(s(0), z0) → c4
TIMES(0, z0) → c5
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(0, s(z0), z1) → c8
DIV(0, z0) → c9
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:none
PLUS(s(z0), z1) → c(PLUS(z0, z1))
PLUS(z0, 0) → c1
PLUS(0, z0) → c2
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
TIMES(s(0), z0) → c4
TIMES(0, z0) → c5
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(0, s(z0), z1) → c8
DIV(0, z0) → c9
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
plus, times, quot, div
PLUS, TIMES, QUOT, DIV
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
DIV(0, z0) → c9
PLUS(z0, 0) → c1
PLUS(0, z0) → c2
TIMES(s(0), z0) → c4
TIMES(0, z0) → c5
QUOT(0, s(z0), z1) → c8
Tuples:
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
quot(z0, 0, s(z1)) → s(div(z0, s(z1)))
quot(s(z0), s(z1), z2) → quot(z0, z1, z2)
quot(0, s(z0), z1) → 0
div(0, z0) → 0
div(z0, z1) → quot(z0, z1, z1)
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:none
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
plus, times, quot, div
PLUS, TIMES, QUOT, DIV
c, c3, c6, c7, c10
quot(z0, 0, s(z1)) → s(div(z0, s(z1)))
quot(s(z0), s(z1), z2) → quot(z0, z1, z2)
quot(0, s(z0), z1) → 0
div(0, z0) → 0
div(z0, z1) → quot(z0, z1, z1)
Tuples:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:none
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
times, plus
PLUS, TIMES, QUOT, DIV
c, c3, c6, c7, c10
We considered the (Usable) Rules:none
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
The order we found is given by the following interpretation:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(PLUS(x1, x2)) = 0
POL(QUOT(x1, x2, x3)) = x1
POL(TIMES(x1, x2)) = 0
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(plus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(times(x1, x2)) = 0
Tuples:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
Defined Rule Symbols:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
times, plus
PLUS, TIMES, QUOT, DIV
c, c3, c6, c7, c10
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
Tuples:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
Defined Rule Symbols:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
times, plus
PLUS, TIMES, QUOT, DIV
c, c3, c6, c7, c10
We considered the (Usable) Rules:none
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
The order we found is given by the following interpretation:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
POL(0) = 0
POL(DIV(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(QUOT(x1, x2, x3)) = 0
POL(TIMES(x1, x2)) = x1
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(plus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(times(x1, x2)) = 0
Tuples:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
S tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
K tuples:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
Defined Rule Symbols:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
times, plus
PLUS, TIMES, QUOT, DIV
c, c3, c6, c7, c10
We considered the (Usable) Rules:none
PLUS(s(z0), z1) → c(PLUS(z0, z1))
The order we found is given by the following interpretation:
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
POL(0) = [1]
POL(DIV(x1, x2)) = 0
POL(PLUS(x1, x2)) = x1
POL(QUOT(x1, x2, x3)) = 0
POL(TIMES(x1, x2)) = [2]x1·x2
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(plus(x1, x2)) = [2] + [2]x1 + [2]x2 + x22 + [2]x1·x2 + [2]x12
POL(s(x1)) = [2] + x1
POL(times(x1, x2)) = [1] + x1 + x2 + x22 + x1·x2 + x12
Tuples:
times(s(z0), z1) → plus(z1, times(z0, z1))
times(s(0), z0) → z0
times(0, z0) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
S tuples:none
PLUS(s(z0), z1) → c(PLUS(z0, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
Defined Rule Symbols:
QUOT(s(z0), s(z1), z2) → c7(QUOT(z0, z1, z2))
QUOT(z0, 0, s(z1)) → c6(DIV(z0, s(z1)))
DIV(z0, z1) → c10(QUOT(z0, z1, z1))
TIMES(s(z0), z1) → c3(PLUS(z1, times(z0, z1)), TIMES(z0, z1))
PLUS(s(z0), z1) → c(PLUS(z0, z1))
times, plus
PLUS, TIMES, QUOT, DIV
c, c3, c6, c7, c10