### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

Rewrite Strategy: FULL

### (1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
fstsplit(s(n), cons(h, t)) →+ cons(h, fstsplit(n, t))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [n / s(n), t / cons(h, t)].
The result substitution is [ ].

### (3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

### (4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

S is empty.
Rewrite Strategy: FULL

### (5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
cons/0
map_f/0
f/0
f/1

### (6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

S is empty.
Rewrite Strategy: FULL

Infered types.

### (8) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

### (9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
fstsplit, sndsplit, leq, length, app, map_f, process

They will be analysed ascendingly in the following order:
fstsplit < process
sndsplit < process
leq < process
length < process
app < map_f
app < process
map_f < process

### (10) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

The following defined symbols remain to be analysed:
fstsplit, sndsplit, leq, length, app, map_f, process

They will be analysed ascendingly in the following order:
fstsplit < process
sndsplit < process
leq < process
length < process
app < map_f
app < process
map_f < process

### (11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

Induction Base:
fstsplit(gen_0':s6_0(0), gen_nil:cons:f5_0(0)) →RΩ(1)
nil

Induction Step:
fstsplit(gen_0':s6_0(+(n8_0, 1)), gen_nil:cons:f5_0(+(n8_0, 1))) →RΩ(1)
cons(fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0))) →IH
cons(gen_nil:cons:f5_0(c9_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (13) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

The following defined symbols remain to be analysed:
sndsplit, leq, length, app, map_f, process

They will be analysed ascendingly in the following order:
sndsplit < process
leq < process
length < process
app < map_f
app < process
map_f < process

### (14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)

Induction Base:
sndsplit(gen_0':s6_0(0), gen_nil:cons:f5_0(0)) →RΩ(1)
gen_nil:cons:f5_0(0)

Induction Step:
sndsplit(gen_0':s6_0(+(n526_0, 1)), gen_nil:cons:f5_0(+(n526_0, 1))) →RΩ(1)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) →IH
gen_nil:cons:f5_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (16) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

The following defined symbols remain to be analysed:
leq, length, app, map_f, process

They will be analysed ascendingly in the following order:
leq < process
length < process
app < map_f
app < process
map_f < process

### (17) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)

Induction Base:
leq(gen_0':s6_0(0), gen_0':s6_0(0)) →RΩ(1)
true

Induction Step:
leq(gen_0':s6_0(+(n1102_0, 1)), gen_0':s6_0(+(n1102_0, 1))) →RΩ(1)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (19) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

The following defined symbols remain to be analysed:
length, app, map_f, process

They will be analysed ascendingly in the following order:
length < process
app < map_f
app < process
map_f < process

### (20) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)

Induction Base:
length(gen_nil:cons:f5_0(0)) →RΩ(1)
0'

Induction Step:
length(gen_nil:cons:f5_0(+(n1461_0, 1))) →RΩ(1)
s(length(gen_nil:cons:f5_0(n1461_0))) →IH
s(gen_0':s6_0(c1462_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (22) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

The following defined symbols remain to be analysed:
app, map_f, process

They will be analysed ascendingly in the following order:
app < map_f
app < process
map_f < process

### (23) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)

Induction Base:
app(gen_nil:cons:f5_0(0), gen_nil:cons:f5_0(b)) →RΩ(1)
gen_nil:cons:f5_0(b)

Induction Step:
app(gen_nil:cons:f5_0(+(n1749_0, 1)), gen_nil:cons:f5_0(b)) →RΩ(1)
cons(app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b))) →IH
cons(gen_nil:cons:f5_0(+(b, c1750_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (25) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

The following defined symbols remain to be analysed:
map_f, process

They will be analysed ascendingly in the following order:
map_f < process

### (26) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
map_f(gen_nil:cons:f5_0(+(1, n2646_0))) → *7_0, rt ∈ Ω(n26460)

Induction Base:
map_f(gen_nil:cons:f5_0(+(1, 0)))

Induction Step:
map_f(gen_nil:cons:f5_0(+(1, +(n2646_0, 1)))) →RΩ(1)
app(f, map_f(gen_nil:cons:f5_0(+(1, n2646_0)))) →IH
app(f, *7_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

### (28) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
map_f(gen_nil:cons:f5_0(+(1, n2646_0))) → *7_0, rt ∈ Ω(n26460)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

The following defined symbols remain to be analysed:
process

### (29) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol process.

### (30) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
map_f(gen_nil:cons:f5_0(+(1, n2646_0))) → *7_0, rt ∈ Ω(n26460)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

No more defined symbols left to analyse.

### (31) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

### (33) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
map_f(gen_nil:cons:f5_0(+(1, n2646_0))) → *7_0, rt ∈ Ω(n26460)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

No more defined symbols left to analyse.

### (34) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

### (36) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

No more defined symbols left to analyse.

### (37) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

### (39) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

No more defined symbols left to analyse.

### (40) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

### (42) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

No more defined symbols left to analyse.

### (43) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

### (45) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

No more defined symbols left to analyse.

### (46) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

### (48) Obligation:

TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)

Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s

Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)

Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))

No more defined symbols left to analyse.

### (49) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)