(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
fstsplit(s(n), cons(h, t)) →+ cons(h, fstsplit(n, t))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [n / s(n), t / cons(h, t)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/0
map_f/0
f/0
f/1
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
fstsplit(0', x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(t)) → cons(fstsplit(n, t))
sndsplit(0', x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(t)) → false
leq(0', m) → true
leq(s(n), 0') → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0'
length(cons(t)) → s(length(t))
app(nil, x) → x
app(cons(t), x) → cons(app(t, x))
map_f(nil) → nil
map_f(cons(t)) → app(f, map_f(t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(nil), store))))
if2(store, m, false) → process(app(map_f(nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(nil), store)), m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fstsplit,
sndsplit,
leq,
length,
app,
map_f,
processThey will be analysed ascendingly in the following order:
fstsplit < process
sndsplit < process
leq < process
length < process
app < map_f
app < process
map_f < process
(10) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
fstsplit, sndsplit, leq, length, app, map_f, process
They will be analysed ascendingly in the following order:
fstsplit < process
sndsplit < process
leq < process
length < process
app < map_f
app < process
map_f < process
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fstsplit(
gen_0':s6_0(
n8_0),
gen_nil:cons:f5_0(
n8_0)) →
gen_nil:cons:f5_0(
n8_0), rt ∈ Ω(1 + n8
0)
Induction Base:
fstsplit(gen_0':s6_0(0), gen_nil:cons:f5_0(0)) →RΩ(1)
nil
Induction Step:
fstsplit(gen_0':s6_0(+(n8_0, 1)), gen_nil:cons:f5_0(+(n8_0, 1))) →RΩ(1)
cons(fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0))) →IH
cons(gen_nil:cons:f5_0(c9_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
sndsplit, leq, length, app, map_f, process
They will be analysed ascendingly in the following order:
sndsplit < process
leq < process
length < process
app < map_f
app < process
map_f < process
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sndsplit(
gen_0':s6_0(
n526_0),
gen_nil:cons:f5_0(
n526_0)) →
gen_nil:cons:f5_0(
0), rt ∈ Ω(1 + n526
0)
Induction Base:
sndsplit(gen_0':s6_0(0), gen_nil:cons:f5_0(0)) →RΩ(1)
gen_nil:cons:f5_0(0)
Induction Step:
sndsplit(gen_0':s6_0(+(n526_0, 1)), gen_nil:cons:f5_0(+(n526_0, 1))) →RΩ(1)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) →IH
gen_nil:cons:f5_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
leq, length, app, map_f, process
They will be analysed ascendingly in the following order:
leq < process
length < process
app < map_f
app < process
map_f < process
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
leq(
gen_0':s6_0(
n1102_0),
gen_0':s6_0(
n1102_0)) →
true, rt ∈ Ω(1 + n1102
0)
Induction Base:
leq(gen_0':s6_0(0), gen_0':s6_0(0)) →RΩ(1)
true
Induction Step:
leq(gen_0':s6_0(+(n1102_0, 1)), gen_0':s6_0(+(n1102_0, 1))) →RΩ(1)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(18) Complex Obligation (BEST)
(19) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
length, app, map_f, process
They will be analysed ascendingly in the following order:
length < process
app < map_f
app < process
map_f < process
(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(
gen_nil:cons:f5_0(
n1461_0)) →
gen_0':s6_0(
n1461_0), rt ∈ Ω(1 + n1461
0)
Induction Base:
length(gen_nil:cons:f5_0(0)) →RΩ(1)
0'
Induction Step:
length(gen_nil:cons:f5_0(+(n1461_0, 1))) →RΩ(1)
s(length(gen_nil:cons:f5_0(n1461_0))) →IH
s(gen_0':s6_0(c1462_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(21) Complex Obligation (BEST)
(22) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
app, map_f, process
They will be analysed ascendingly in the following order:
app < map_f
app < process
map_f < process
(23) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
app(
gen_nil:cons:f5_0(
n1749_0),
gen_nil:cons:f5_0(
b)) →
gen_nil:cons:f5_0(
+(
n1749_0,
b)), rt ∈ Ω(1 + n1749
0)
Induction Base:
app(gen_nil:cons:f5_0(0), gen_nil:cons:f5_0(b)) →RΩ(1)
gen_nil:cons:f5_0(b)
Induction Step:
app(gen_nil:cons:f5_0(+(n1749_0, 1)), gen_nil:cons:f5_0(b)) →RΩ(1)
cons(app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b))) →IH
cons(gen_nil:cons:f5_0(+(b, c1750_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(24) Complex Obligation (BEST)
(25) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
map_f, process
They will be analysed ascendingly in the following order:
map_f < process
(26) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
map_f(
gen_nil:cons:f5_0(
+(
1,
n2646_0))) →
*7_0, rt ∈ Ω(n2646
0)
Induction Base:
map_f(gen_nil:cons:f5_0(+(1, 0)))
Induction Step:
map_f(gen_nil:cons:f5_0(+(1, +(n2646_0, 1)))) →RΩ(1)
app(f, map_f(gen_nil:cons:f5_0(+(1, n2646_0)))) →IH
app(f, *7_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(27) Complex Obligation (BEST)
(28) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
map_f(gen_nil:cons:f5_0(+(1, n2646_0))) → *7_0, rt ∈ Ω(n26460)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
process
(29) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol process.
(30) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
map_f(gen_nil:cons:f5_0(+(1, n2646_0))) → *7_0, rt ∈ Ω(n26460)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
(32) BOUNDS(n^1, INF)
(33) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
map_f(gen_nil:cons:f5_0(+(1, n2646_0))) → *7_0, rt ∈ Ω(n26460)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(34) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
(35) BOUNDS(n^1, INF)
(36) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
app(gen_nil:cons:f5_0(n1749_0), gen_nil:cons:f5_0(b)) → gen_nil:cons:f5_0(+(n1749_0, b)), rt ∈ Ω(1 + n17490)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(37) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
(38) BOUNDS(n^1, INF)
(39) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
length(gen_nil:cons:f5_0(n1461_0)) → gen_0':s6_0(n1461_0), rt ∈ Ω(1 + n14610)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(40) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
(41) BOUNDS(n^1, INF)
(42) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
leq(gen_0':s6_0(n1102_0), gen_0':s6_0(n1102_0)) → true, rt ∈ Ω(1 + n11020)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(43) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
(44) BOUNDS(n^1, INF)
(45) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
sndsplit(gen_0':s6_0(n526_0), gen_nil:cons:f5_0(n526_0)) → gen_nil:cons:f5_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(46) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
(47) BOUNDS(n^1, INF)
(48) Obligation:
TRS:
Rules:
fstsplit(
0',
x) →
nilfstsplit(
s(
n),
nil) →
nilfstsplit(
s(
n),
cons(
t)) →
cons(
fstsplit(
n,
t))
sndsplit(
0',
x) →
xsndsplit(
s(
n),
nil) →
nilsndsplit(
s(
n),
cons(
t)) →
sndsplit(
n,
t)
empty(
nil) →
trueempty(
cons(
t)) →
falseleq(
0',
m) →
trueleq(
s(
n),
0') →
falseleq(
s(
n),
s(
m)) →
leq(
n,
m)
length(
nil) →
0'length(
cons(
t)) →
s(
length(
t))
app(
nil,
x) →
xapp(
cons(
t),
x) →
cons(
app(
t,
x))
map_f(
nil) →
nilmap_f(
cons(
t)) →
app(
f,
map_f(
t))
process(
store,
m) →
if1(
store,
m,
leq(
m,
length(
store)))
if1(
store,
m,
true) →
if2(
store,
m,
empty(
fstsplit(
m,
store)))
if1(
store,
m,
false) →
if3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
nil),
store))))
if2(
store,
m,
false) →
process(
app(
map_f(
nil),
sndsplit(
m,
store)),
m)
if3(
store,
m,
false) →
process(
sndsplit(
m,
app(
map_f(
nil),
store)),
m)
Types:
fstsplit :: 0':s → nil:cons:f → nil:cons:f
0' :: 0':s
nil :: nil:cons:f
s :: 0':s → 0':s
cons :: nil:cons:f → nil:cons:f
sndsplit :: 0':s → nil:cons:f → nil:cons:f
empty :: nil:cons:f → true:false
true :: true:false
false :: true:false
leq :: 0':s → 0':s → true:false
length :: nil:cons:f → 0':s
app :: nil:cons:f → nil:cons:f → nil:cons:f
map_f :: nil:cons:f → nil:cons:f
f :: nil:cons:f
process :: nil:cons:f → 0':s → process:if1:if2:if3
if1 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if2 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
if3 :: nil:cons:f → 0':s → true:false → process:if1:if2:if3
hole_nil:cons:f1_0 :: nil:cons:f
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
hole_process:if1:if2:if34_0 :: process:if1:if2:if3
gen_nil:cons:f5_0 :: Nat → nil:cons:f
gen_0':s6_0 :: Nat → 0':s
Lemmas:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
Generator Equations:
gen_nil:cons:f5_0(0) ⇔ nil
gen_nil:cons:f5_0(+(x, 1)) ⇔ cons(gen_nil:cons:f5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(49) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fstsplit(gen_0':s6_0(n8_0), gen_nil:cons:f5_0(n8_0)) → gen_nil:cons:f5_0(n8_0), rt ∈ Ω(1 + n80)
(50) BOUNDS(n^1, INF)