0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 160 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 281 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 229 ms)
↳16 CdtProblem
↳17 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 BOUNDS(1, 1)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
The duplicating contexts are:
quot(s(x), s([]))
The defined contexts are:
log(s([]))
quot([], s(x1))
pred([])
minus([], x1)
quot([], s(s(0)))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
Tuples:
pred(s(z0)) → z0
minus(z0, 0) → z0
minus(z0, s(z1)) → pred(minus(z0, z1))
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
log(s(0)) → 0
log(s(s(z0))) → s(log(s(quot(z0, s(s(0))))))
S tuples:
PRED(s(z0)) → c
MINUS(z0, 0) → c1
MINUS(z0, s(z1)) → c2(PRED(minus(z0, z1)), MINUS(z0, z1))
QUOT(0, s(z0)) → c3
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(0)) → c5
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
K tuples:none
PRED(s(z0)) → c
MINUS(z0, 0) → c1
MINUS(z0, s(z1)) → c2(PRED(minus(z0, z1)), MINUS(z0, z1))
QUOT(0, s(z0)) → c3
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(0)) → c5
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
pred, minus, quot, log
PRED, MINUS, QUOT, LOG
c, c1, c2, c3, c4, c5, c6
MINUS(z0, 0) → c1
PRED(s(z0)) → c
QUOT(0, s(z0)) → c3
LOG(s(0)) → c5
Tuples:
pred(s(z0)) → z0
minus(z0, 0) → z0
minus(z0, s(z1)) → pred(minus(z0, z1))
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
log(s(0)) → 0
log(s(s(z0))) → s(log(s(quot(z0, s(s(0))))))
S tuples:
MINUS(z0, s(z1)) → c2(PRED(minus(z0, z1)), MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
K tuples:none
MINUS(z0, s(z1)) → c2(PRED(minus(z0, z1)), MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
pred, minus, quot, log
MINUS, QUOT, LOG
c2, c4, c6
Tuples:
pred(s(z0)) → z0
minus(z0, 0) → z0
minus(z0, s(z1)) → pred(minus(z0, z1))
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
log(s(0)) → 0
log(s(s(z0))) → s(log(s(quot(z0, s(s(0))))))
S tuples:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
K tuples:none
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
pred, minus, quot, log
QUOT, LOG, MINUS
c4, c6, c2
log(s(0)) → 0
log(s(s(z0))) → s(log(s(quot(z0, s(s(0))))))
Tuples:
minus(z0, 0) → z0
minus(z0, s(z1)) → pred(minus(z0, z1))
pred(s(z0)) → z0
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
S tuples:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
K tuples:none
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
minus, pred, quot
QUOT, LOG, MINUS
c4, c6, c2
We considered the (Usable) Rules:
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
And the Tuples:
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
minus(z0, s(z1)) → pred(minus(z0, z1))
minus(z0, 0) → z0
quot(0, s(z0)) → 0
pred(s(z0)) → z0
The order we found is given by the following interpretation:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
POL(0) = 0
POL(LOG(x1)) = x1
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(pred(x1)) = x1
POL(quot(x1, x2)) = x1
POL(s(x1)) = [1] + x1
Tuples:
minus(z0, 0) → z0
minus(z0, s(z1)) → pred(minus(z0, z1))
pred(s(z0)) → z0
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
S tuples:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
K tuples:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
Defined Rule Symbols:
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
minus, pred, quot
QUOT, LOG, MINUS
c4, c6, c2
We considered the (Usable) Rules:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
And the Tuples:
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
minus(z0, s(z1)) → pred(minus(z0, z1))
minus(z0, 0) → z0
quot(0, s(z0)) → 0
pred(s(z0)) → z0
The order we found is given by the following interpretation:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
POL(0) = 0
POL(LOG(x1)) = x12
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = [2]x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(pred(x1)) = x1
POL(quot(x1, x2)) = x1
POL(s(x1)) = [1] + x1
Tuples:
minus(z0, 0) → z0
minus(z0, s(z1)) → pred(minus(z0, z1))
pred(s(z0)) → z0
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
S tuples:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
K tuples:
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
Defined Rule Symbols:
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, pred, quot
QUOT, LOG, MINUS
c4, c6, c2
We considered the (Usable) Rules:
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
And the Tuples:
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
minus(z0, s(z1)) → pred(minus(z0, z1))
minus(z0, 0) → z0
quot(0, s(z0)) → 0
pred(s(z0)) → z0
The order we found is given by the following interpretation:
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
POL(0) = 0
POL(LOG(x1)) = x12
POL(MINUS(x1, x2)) = [1] + x2
POL(QUOT(x1, x2)) = x1·x2
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(pred(x1)) = x1
POL(quot(x1, x2)) = x1
POL(s(x1)) = [2] + x1
Tuples:
minus(z0, 0) → z0
minus(z0, s(z1)) → pred(minus(z0, z1))
pred(s(z0)) → z0
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
S tuples:none
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
Defined Rule Symbols:
LOG(s(s(z0))) → c6(LOG(s(quot(z0, s(s(0))))), QUOT(z0, s(s(0))))
QUOT(s(z0), s(z1)) → c4(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(z0, s(z1)) → c2(MINUS(z0, z1))
minus, pred, quot
QUOT, LOG, MINUS
c4, c6, c2