0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 90 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 25 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))
As the TRS is a non-duplicating overlay system, we have rc = irc.
half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))
Tuples:
half(0) → 0
half(s(s(z0))) → s(half(z0))
log(s(0)) → 0
log(s(s(z0))) → s(log(s(half(z0))))
S tuples:
HALF(0) → c
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(0)) → c2
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
K tuples:none
HALF(0) → c
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(0)) → c2
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
half, log
HALF, LOG
c, c1, c2, c3
LOG(s(0)) → c2
HALF(0) → c
Tuples:
half(0) → 0
half(s(s(z0))) → s(half(z0))
log(s(0)) → 0
log(s(s(z0))) → s(log(s(half(z0))))
S tuples:
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
K tuples:none
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
half, log
HALF, LOG
c1, c3
log(s(0)) → 0
log(s(s(z0))) → s(log(s(half(z0))))
Tuples:
half(0) → 0
half(s(s(z0))) → s(half(z0))
S tuples:
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
K tuples:none
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
half
HALF, LOG
c1, c3
We considered the (Usable) Rules:
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
And the Tuples:
half(s(s(z0))) → s(half(z0))
half(0) → 0
The order we found is given by the following interpretation:
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
POL(0) = 0
POL(HALF(x1)) = 0
POL(LOG(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(half(x1)) = x1
POL(s(x1)) = [1] + x1
Tuples:
half(0) → 0
half(s(s(z0))) → s(half(z0))
S tuples:
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
K tuples:
HALF(s(s(z0))) → c1(HALF(z0))
Defined Rule Symbols:
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
half
HALF, LOG
c1, c3
We considered the (Usable) Rules:
HALF(s(s(z0))) → c1(HALF(z0))
And the Tuples:
half(s(s(z0))) → s(half(z0))
half(0) → 0
The order we found is given by the following interpretation:
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
POL(0) = 0
POL(HALF(x1)) = [2]x1
POL(LOG(x1)) = x12
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(half(x1)) = x1
POL(s(x1)) = [2] + x1
Tuples:
half(0) → 0
half(s(s(z0))) → s(half(z0))
S tuples:none
HALF(s(s(z0))) → c1(HALF(z0))
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
Defined Rule Symbols:
LOG(s(s(z0))) → c3(LOG(s(half(z0))), HALF(z0))
HALF(s(s(z0))) → c1(HALF(z0))
half
HALF, LOG
c1, c3