0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 1 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 175 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 52 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 41 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 147 ms)
↳16 CdtProblem
↳17 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 165 ms)
↳18 CdtProblem
↳19 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 115 ms)
↳20 CdtProblem
↳21 CdtRuleRemovalProof (UPPER BOUND(ADD(n^3)), 1108 ms)
↳22 CdtProblem
↳23 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳24 BOUNDS(1, 1)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
The duplicating contexts are:
quot(s(x), s([]))
The defined contexts are:
quot([], s(x1))
shuffle([])
less_leaves([], x1)
less_leaves(x0, [])
app([], add(x1, nil))
minus([], x1)
app([], x1)
reverse([])
concat([], x1)
concat(x0, [])
app(x0, add([], nil))
app(x0, [])
[] just represents basic- or constructor-terms in the following defined contexts:
quot([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
S tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(nil, z0) → c4
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(nil) → c6
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(nil) → c8
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(leaf, z0) → c10
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(z0, leaf) → c12
LESS_LEAVES(leaf, cons(z0, z1)) → c13
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(nil, z0) → c4
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(nil) → c6
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(nil) → c8
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(leaf, z0) → c10
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(z0, leaf) → c12
LESS_LEAVES(leaf, cons(z0, z1)) → c13
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
minus, quot, app, reverse, shuffle, concat, less_leaves
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14
CONCAT(leaf, z0) → c10
LESS_LEAVES(leaf, cons(z0, z1)) → c13
LESS_LEAVES(z0, leaf) → c12
APP(nil, z0) → c4
MINUS(z0, 0) → c
SHUFFLE(nil) → c8
REVERSE(nil) → c6
QUOT(0, s(z0)) → c2
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
minus, quot, app, reverse, shuffle, concat, less_leaves
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
We considered the (Usable) Rules:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
And the Tuples:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
POL(0) = 0
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = [2]x1
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [1] + x1 + x2
POL(leaf) = 0
POL(minus(x1, x2)) = 0
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = 0
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
Defined Rule Symbols:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
We considered the (Usable) Rules:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
POL(0) = 0
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = x1
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(leaf) = 0
POL(minus(x1, x2)) = x1
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = [1] + x1
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
Defined Rule Symbols:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
We considered the (Usable) Rules:
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
And the Tuples:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
POL(0) = 0
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = x1
POL(add(x1, x2)) = [1] + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(leaf) = 0
POL(minus(x1, x2)) = 0
POL(nil) = 0
POL(reverse(x1)) = x1
POL(s(x1)) = 0
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
Defined Rule Symbols:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
We considered the (Usable) Rules:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
POL(0) = [2]
POL(APP(x1, x2)) = x2 + x22
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = [2] + x1
POL(QUOT(x1, x2)) = x1·x2 + x12
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = x1 + x2 + x22 + [2]x1·x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = [2] + [2]x1 + [2]x22 + x1·x2
POL(cons(x1, x2)) = 0
POL(leaf) = [2]
POL(minus(x1, x2)) = x1
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = [1] + x1
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
Defined Rule Symbols:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
We considered the (Usable) Rules:
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
And the Tuples:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
POL(0) = [1]
POL(APP(x1, x2)) = x2
POL(CONCAT(x1, x2)) = [1] + x1
POL(LESS_LEAVES(x1, x2)) = x2 + x22 + [2]x12
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = [1] + x1 + [2]x2 + [2]x22 + [2]x1·x2 + [2]x12
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = [1] + x1 + x2
POL(cons(x1, x2)) = [2] + x1 + x2
POL(leaf) = [1]
POL(minus(x1, x2)) = [2] + x2 + x22
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = [1]
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
Defined Rule Symbols:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
We considered the (Usable) Rules:
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
And the Tuples:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
POL(0) = [2]
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = [1] + [2]x1
POL(SHUFFLE(x1)) = x12
POL(add(x1, x2)) = [1] + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = [2] + [2]x22 + x1·x2 + x12
POL(cons(x1, x2)) = 0
POL(leaf) = [2]
POL(minus(x1, x2)) = [2] + [2]x2 + [2]x22 + x12
POL(nil) = 0
POL(reverse(x1)) = x1
POL(s(x1)) = 0
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:
APP(add(z0, z1), z2) → c5(APP(z1, z2))
Defined Rule Symbols:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14
We considered the (Usable) Rules:
APP(add(z0, z1), z2) → c5(APP(z1, z2))
And the Tuples:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
POL(0) = 0
POL(APP(x1, x2)) = x1
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = [1] + x12
POL(SHUFFLE(x1)) = x12 + x13
POL(add(x1, x2)) = [1] + x1 + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(leaf) = 0
POL(minus(x1, x2)) = 0
POL(nil) = 0
POL(reverse(x1)) = x1
POL(s(x1)) = 0
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
S tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
Defined Rule Symbols:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
minus, reverse, app, concat
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
c1, c3, c5, c7, c9, c11, c14