0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtUsableRulesProof (⇔, 0 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 72 ms)
↳8 CdtProblem
↳9 CdtKnowledgeProof (⇔, 0 ms)
↳10 BOUNDS(1, 1)
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
As the TRS does not nest defined symbols, we have rc = irc.
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
Tuples:
f(0, 1, z0) → f(s(z0), z0, z0)
f(z0, z1, s(z2)) → s(f(0, 1, z2))
S tuples:
F(0, 1, z0) → c(F(s(z0), z0, z0))
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
K tuples:none
F(0, 1, z0) → c(F(s(z0), z0, z0))
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
f
F
c, c1
f(0, 1, z0) → f(s(z0), z0, z0)
f(z0, z1, s(z2)) → s(f(0, 1, z2))
S tuples:
F(0, 1, z0) → c(F(s(z0), z0, z0))
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
K tuples:none
F(0, 1, z0) → c(F(s(z0), z0, z0))
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
F
c, c1
We considered the (Usable) Rules:none
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
The order we found is given by the following interpretation:
F(0, 1, z0) → c(F(s(z0), z0, z0))
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
POL(0) = 0
POL(1) = 0
POL(F(x1, x2, x3)) = [2]x3
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(s(x1)) = [2] + x1
S tuples:
F(0, 1, z0) → c(F(s(z0), z0, z0))
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
K tuples:
F(0, 1, z0) → c(F(s(z0), z0, z0))
Defined Rule Symbols:none
F(z0, z1, s(z2)) → c1(F(0, 1, z2))
F
c, c1
Now S is empty
F(0, 1, z0) → c(F(s(z0), z0, z0))
F(z0, z1, s(z2)) → c1(F(0, 1, z2))