0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 22 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 138 ms)
↳10 CdtProblem
↳11 CdtKnowledgeProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 101 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 78 ms)
↳16 CdtProblem
↳17 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 BOUNDS(1, 1)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
The duplicating contexts are:
mod(s(x), s([]))
mod(s([]), s(y))
if_mod(true, s(x), s([]))
The defined contexts are:
if_mod([], s(x1), s(x2))
mod([], s(x1))
le(x0, [])
if_mod(x0, s([]), s(x2))
minus([], x1)
[] just represents basic- or constructor-terms in the following defined contexts:
if_mod([], s(x1), s(x2))
mod([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
Tuples:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, s(z0), s(z1)) → mod(minus(z0, z1), s(z1))
if_mod(false, s(z0), s(z1)) → s(z0)
S tuples:
LE(0, z0) → c
LE(s(z0), 0) → c1
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(z0, 0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(0, z0) → c5
MOD(s(z0), 0) → c6
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_MOD(false, s(z0), s(z1)) → c9
K tuples:none
LE(0, z0) → c
LE(s(z0), 0) → c1
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(z0, 0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(0, z0) → c5
MOD(s(z0), 0) → c6
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_MOD(false, s(z0), s(z1)) → c9
le, minus, mod, if_mod
LE, MINUS, MOD, IF_MOD
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
IF_MOD(false, s(z0), s(z1)) → c9
LE(0, z0) → c
LE(s(z0), 0) → c1
MOD(0, z0) → c5
MOD(s(z0), 0) → c6
MINUS(z0, 0) → c3
Tuples:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, s(z0), s(z1)) → mod(minus(z0, z1), s(z1))
if_mod(false, s(z0), s(z1)) → s(z0)
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
le, minus, mod, if_mod
LE, MINUS, MOD, IF_MOD
c2, c4, c7, c8
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, s(z0), s(z1)) → mod(minus(z0, z1), s(z1))
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
le, minus
LE, MINUS, MOD, IF_MOD
c2, c4, c7, c8
We considered the (Usable) Rules:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
POL(0) = 0
POL(IF_MOD(x1, x2, x3)) = x2
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(MOD(x1, x2)) = x1
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
Tuples:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
Defined Rule Symbols:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
le, minus
LE, MINUS, MOD, IF_MOD
c2, c4, c7, c8
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
Tuples:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
le, minus
LE, MINUS, MOD, IF_MOD
c2, c4, c7, c8
We considered the (Usable) Rules:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
POL(0) = [1]
POL(IF_MOD(x1, x2, x3)) = [1] + x2·x3
POL(LE(x1, x2)) = x1
POL(MINUS(x1, x2)) = 0
POL(MOD(x1, x2)) = [1] + x2 + x1·x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = [2]
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
Tuples:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
le, minus
LE, MINUS, MOD, IF_MOD
c2, c4, c7, c8
We considered the (Usable) Rules:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
POL(0) = [2]
POL(IF_MOD(x1, x2, x3)) = x22
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = [1] + x1
POL(MOD(x1, x2)) = x12
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
Tuples:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:none
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
le, minus
LE, MINUS, MOD, IF_MOD
c2, c4, c7, c8