* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak dependency pairs:
        
        Strict DPs
          minus#(x,0()) -> c_1(x)
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
          plus#(0(),y) -> c_3(y)
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
          plus#(s(x),y) -> c_5(plus#(x,y))
          quot#(0(),s(y)) -> c_6()
          quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(x,0()) -> c_1(x)
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(0(),y) -> c_3(y)
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(s(x),y) -> c_5(plus#(x,y))
            quot#(0(),s(y)) -> c_6()
            quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          minus#(x,0()) -> c_1(x)
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
          plus#(0(),y) -> c_3(y)
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
          plus#(s(x),y) -> c_5(plus#(x,y))
          quot#(0(),s(y)) -> c_6()
          quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
* Step 3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(x,0()) -> c_1(x)
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(0(),y) -> c_3(y)
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(s(x),y) -> c_5(plus#(x,y))
            quot#(0(),s(y)) -> c_6()
            quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(quot#) = {1},
            uargs(c_2) = {1},
            uargs(c_5) = {1},
            uargs(c_7) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                 p(0) = [10]                  
             p(minus) = [1] x1 + [1]          
              p(plus) = [0]                   
              p(quot) = [0]                   
                 p(s) = [1] x1 + [1]          
            p(minus#) = [1] x2 + [0]          
             p(plus#) = [0]                   
             p(quot#) = [1] x1 + [2] x2 + [15]
               p(c_1) = [0]                   
               p(c_2) = [1] x1 + [0]          
               p(c_3) = [0]                   
               p(c_4) = [0]                   
               p(c_5) = [1] x1 + [0]          
               p(c_6) = [0]                   
               p(c_7) = [1] x1 + [0]          
          
          Following rules are strictly oriented:
              minus#(x,0()) = [10]            
                            > [0]             
                            = c_1(x)          
          
          minus#(s(x),s(y)) = [1] y + [1]     
                            > [1] y + [0]     
                            = c_2(minus#(x,y))
          
            quot#(0(),s(y)) = [2] y + [27]    
                            > [0]             
                            = c_6()           
          
               minus(x,0()) = [1] x + [1]     
                            > [1] x + [0]     
                            = x               
          
           minus(s(x),s(y)) = [1] x + [2]     
                            > [1] x + [1]     
                            = minus(x,y)      
          
          
          Following rules are (at-least) weakly oriented:
                                     plus#(0(),y) =  [0]                                         
                                                  >= [0]                                         
                                                  =  c_3(y)                                      
          
          plus#(minus(x,s(0())),minus(y,s(s(z)))) =  [0]                                         
                                                  >= [0]                                         
                                                  =  c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
          
                                    plus#(s(x),y) =  [0]                                         
                                                  >= [0]                                         
                                                  =  c_5(plus#(x,y))                             
          
                                 quot#(s(x),s(y)) =  [1] x + [2] y + [18]                        
                                                  >= [1] x + [2] y + [18]                        
                                                  =  c_7(quot#(minus(x,y),s(y)))                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            plus#(0(),y) -> c_3(y)
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(s(x),y) -> c_5(plus#(x,y))
            quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        - Weak DPs:
            minus#(x,0()) -> c_1(x)
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            quot#(0(),s(y)) -> c_6()
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:plus#(0(),y) -> c_3(y)
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):6
             -->_1 minus#(x,0()) -> c_1(x):5
             -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y))):4
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):3
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2
             -->_1 quot#(0(),s(y)) -> c_6():7
             -->_1 plus#(0(),y) -> c_3(y):1
          
          2:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):3
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2
             -->_1 plus#(0(),y) -> c_3(y):1
          
          3:S:plus#(s(x),y) -> c_5(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):3
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2
             -->_1 plus#(0(),y) -> c_3(y):1
          
          4:S:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
             -->_1 quot#(0(),s(y)) -> c_6():7
             -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y))):4
          
          5:W:minus#(x,0()) -> c_1(x)
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):6
             -->_1 quot#(0(),s(y)) -> c_6():7
             -->_1 minus#(x,0()) -> c_1(x):5
             -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y))):4
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):3
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2
             -->_1 plus#(0(),y) -> c_3(y):1
          
          6:W:minus#(s(x),s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):6
             -->_1 minus#(x,0()) -> c_1(x):5
          
          7:W:quot#(0(),s(y)) -> c_6()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: quot#(0(),s(y)) -> c_6()
* Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            plus#(0(),y) -> c_3(y)
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(s(x),y) -> c_5(plus#(x,y))
            quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        - Weak DPs:
            minus#(x,0()) -> c_1(x)
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: plus#(0(),y) -> c_3(y)
          2: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
          3: plus#(s(x),y) -> c_5(plus#(x,y))
          4: quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
          
        The strictly oriented rules are moved into the weak component.
** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            plus#(0(),y) -> c_3(y)
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(s(x),y) -> c_5(plus#(x,y))
            quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        - Weak DPs:
            minus#(x,0()) -> c_1(x)
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1}
        
        Following symbols are considered usable:
          all
        TcT has computed the following interpretation:
               p(0) = [5]         
           p(minus) = [1] x1 + [0]
            p(plus) = [1]         
            p(quot) = [0]         
               p(s) = [1] x1 + [4]
          p(minus#) = [0]         
           p(plus#) = [4] x1 + [1]
           p(quot#) = [2] x1 + [4]
             p(c_1) = [0]         
             p(c_2) = [8] x1 + [0]
             p(c_3) = [0]         
             p(c_4) = [0]         
             p(c_5) = [1] x1 + [0]
             p(c_6) = [1]         
             p(c_7) = [1] x1 + [4]
        
        Following rules are strictly oriented:
                                   plus#(0(),y) = [21]                                        
                                                > [0]                                         
                                                = c_3(y)                                      
        
        plus#(minus(x,s(0())),minus(y,s(s(z)))) = [4] x + [1]                                 
                                                > [0]                                         
                                                = c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
        
                                  plus#(s(x),y) = [4] x + [17]                                
                                                > [4] x + [1]                                 
                                                = c_5(plus#(x,y))                             
        
                               quot#(s(x),s(y)) = [2] x + [12]                                
                                                > [2] x + [8]                                 
                                                = c_7(quot#(minus(x,y),s(y)))                 
        
        
        Following rules are (at-least) weakly oriented:
            minus#(x,0()) =  [0]             
                          >= [0]             
                          =  c_1(x)          
        
        minus#(s(x),s(y)) =  [0]             
                          >= [0]             
                          =  c_2(minus#(x,y))
        
             minus(x,0()) =  [1] x + [0]     
                          >= [1] x + [0]     
                          =  x               
        
         minus(s(x),s(y)) =  [1] x + [4]     
                          >= [1] x + [0]     
                          =  minus(x,y)      
        
** Step 5.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(x,0()) -> c_1(x)
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(0(),y) -> c_3(y)
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(s(x),y) -> c_5(plus#(x,y))
            quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(x,0()) -> c_1(x)
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(0(),y) -> c_3(y)
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(s(x),y) -> c_5(plus#(x,y))
            quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:minus#(x,0()) -> c_1(x)
             -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y))):6
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):5
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):4
             -->_1 plus#(0(),y) -> c_3(y):3
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):2
             -->_1 minus#(x,0()) -> c_1(x):1
          
          2:W:minus#(s(x),s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):2
             -->_1 minus#(x,0()) -> c_1(x):1
          
          3:W:plus#(0(),y) -> c_3(y)
             -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y))):6
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):5
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):4
             -->_1 plus#(0(),y) -> c_3(y):3
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):2
             -->_1 minus#(x,0()) -> c_1(x):1
          
          4:W:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):5
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):4
             -->_1 plus#(0(),y) -> c_3(y):3
          
          5:W:plus#(s(x),y) -> c_5(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):5
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):4
             -->_1 plus#(0(),y) -> c_3(y):3
          
          6:W:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
             -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y))):6
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: minus#(x,0()) -> c_1(x)
          3: plus#(0(),y) -> c_3(y)
          5: plus#(s(x),y) -> c_5(plus#(x,y))
          4: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
          2: minus#(s(x),s(y)) -> c_2(minus#(x,y))
          6: quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)))
** Step 5.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/1}
        - Obligation:
             runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))