0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 22 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 121 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 0 ms)
↳14 CdtProblem
↳15 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 34 ms)
↳16 CdtProblem
↳17 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 BOUNDS(1, 1)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(s(x), y) → s(plus(x, y))
plus(0, y) → y
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
quot(0, s(y)) → 0
The duplicating contexts are:
quot(s(x), s([]))
The defined contexts are:
quot([], s(x1))
minus([], x1)
[] just represents basic- or constructor-terms in the following defined contexts:
quot([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(s(x), y) → s(plus(x, y))
plus(0, y) → y
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
quot(0, s(y)) → 0
Tuples:
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
quot(0, s(z0)) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
QUOT(0, s(z0)) → c1
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
PLUS(0, z0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MINUS(z0, 0) → c5
K tuples:none
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
QUOT(0, s(z0)) → c1
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
PLUS(0, z0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MINUS(z0, 0) → c5
quot, plus, minus
QUOT, PLUS, MINUS
c, c1, c2, c3, c4, c5
QUOT(0, s(z0)) → c1
MINUS(z0, 0) → c5
PLUS(0, z0) → c3
Tuples:
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
quot(0, s(z0)) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:none
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
quot, plus, minus
QUOT, PLUS, MINUS
c, c2, c4
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
quot(0, s(z0)) → 0
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:none
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
minus
QUOT, PLUS, MINUS
c, c2, c4
We considered the (Usable) Rules:none
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
The order we found is given by the following interpretation:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
POL(0) = 0
POL(MINUS(x1, x2)) = 0
POL(PLUS(x1, x2)) = x1
POL(QUOT(x1, x2)) = 0
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
minus
QUOT, PLUS, MINUS
c, c2, c4
We considered the (Usable) Rules:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
POL(0) = 0
POL(MINUS(x1, x2)) = [3]
POL(PLUS(x1, x2)) = x1
POL(QUOT(x1, x2)) = [2]x1
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus
QUOT, PLUS, MINUS
c, c2, c4
We considered the (Usable) Rules:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
POL(0) = [2]
POL(MINUS(x1, x2)) = [2] + x2
POL(PLUS(x1, x2)) = [2]x1
POL(QUOT(x1, x2)) = [2]x1·x2
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
S tuples:none
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
PLUS(s(z0), z1) → c2(PLUS(z0, z1))
QUOT(s(z0), s(z1)) → c(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
minus
QUOT, PLUS, MINUS
c, c2, c4