0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 23 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 84 ms)
↳8 CdtProblem
↳9 SIsEmptyProof (BOTH BOUNDS(ID, ID), 1 ms)
↳10 BOUNDS(1, 1)
f(0, y) → 0
f(s(x), y) → f(f(x, y), y)
The duplicating contexts are:
f(s(x), [])
The defined contexts are:
f([], x1)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
f(0, y) → 0
f(s(x), y) → f(f(x, y), y)
Tuples:
f(0, z0) → 0
f(s(z0), z1) → f(f(z0, z1), z1)
S tuples:
F(0, z0) → c
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
K tuples:none
F(0, z0) → c
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
f
F
c, c1
F(0, z0) → c
Tuples:
f(0, z0) → 0
f(s(z0), z1) → f(f(z0, z1), z1)
S tuples:
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
K tuples:none
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
f
F
c1
We considered the (Usable) Rules:
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
And the Tuples:
f(0, z0) → 0
f(s(z0), z1) → f(f(z0, z1), z1)
The order we found is given by the following interpretation:
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
POL(0) = 0
POL(F(x1, x2)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(f(x1, x2)) = 0
POL(s(x1)) = [1] + x1
Tuples:
f(0, z0) → 0
f(s(z0), z1) → f(f(z0, z1), z1)
S tuples:none
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
Defined Rule Symbols:
F(s(z0), z1) → c1(F(f(z0, z1), z1), F(z0, z1))
f
F
c1