0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 10 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 147 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 59 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
times(x, s(y)) → plus(times(x, y), x)
plus(x, s(y)) → s(plus(x, y))
plus(x, 0) → x
times(x, 0) → 0
The duplicating contexts are:
times([], s(y))
The defined contexts are:
plus([], x1)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
times(x, s(y)) → plus(times(x, y), x)
plus(x, s(y)) → s(plus(x, y))
plus(x, 0) → x
times(x, 0) → 0
Tuples:
times(z0, s(z1)) → plus(times(z0, z1), z0)
times(z0, 0) → 0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(z0, 0) → z0
S tuples:
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
TIMES(z0, 0) → c1
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
PLUS(z0, 0) → c3
K tuples:none
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
TIMES(z0, 0) → c1
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
PLUS(z0, 0) → c3
times, plus
TIMES, PLUS
c, c1, c2, c3
PLUS(z0, 0) → c3
TIMES(z0, 0) → c1
Tuples:
times(z0, s(z1)) → plus(times(z0, z1), z0)
times(z0, 0) → 0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(z0, 0) → z0
S tuples:
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
K tuples:none
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
times, plus
TIMES, PLUS
c, c2
We considered the (Usable) Rules:none
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
The order we found is given by the following interpretation:
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
POL(0) = 0
POL(PLUS(x1, x2)) = 0
POL(TIMES(x1, x2)) = x2
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(plus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(times(x1, x2)) = 0
Tuples:
times(z0, s(z1)) → plus(times(z0, z1), z0)
times(z0, 0) → 0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(z0, 0) → z0
S tuples:
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
K tuples:
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
Defined Rule Symbols:
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
times, plus
TIMES, PLUS
c, c2
We considered the (Usable) Rules:none
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
The order we found is given by the following interpretation:
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
POL(0) = 0
POL(PLUS(x1, x2)) = [1] + x2
POL(TIMES(x1, x2)) = [2]x2 + x1·x2
POL(c(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(plus(x1, x2)) = [2]x1 + [2]x2 + [2]x22 + x1·x2 + [2]x12
POL(s(x1)) = [2] + x1
POL(times(x1, x2)) = x1 + [2]x1·x2 + [2]x12
Tuples:
times(z0, s(z1)) → plus(times(z0, z1), z0)
times(z0, 0) → 0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(z0, 0) → z0
S tuples:none
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
Defined Rule Symbols:
TIMES(z0, s(z1)) → c(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c2(PLUS(z0, z1))
times, plus
TIMES, PLUS
c, c2