(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(x), s(y)) →+ minus(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus, double, plus

They will be analysed ascendingly in the following order:
minus < plus
double < plus

(8) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
minus, double, plus

They will be analysed ascendingly in the following order:
minus < plus
double < plus

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Induction Base:
minus(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)

Induction Step:
minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
double, plus

They will be analysed ascendingly in the following order:
double < plus

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)

Induction Base:
double(gen_0':s2_0(0)) →RΩ(1)
0'

Induction Step:
double(gen_0':s2_0(+(n244_0, 1))) →RΩ(1)
s(s(double(gen_0':s2_0(n244_0)))) →IH
s(s(gen_0':s2_0(*(2, c245_0))))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
plus

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_0':s2_0(n484_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n484_0, b)), rt ∈ Ω(1 + n4840)

Induction Base:
plus(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)

Induction Step:
plus(gen_0':s2_0(+(n484_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(plus(gen_0':s2_0(n484_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c485_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)
plus(gen_0':s2_0(n484_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n484_0, b)), rt ∈ Ω(1 + n4840)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

(19) BOUNDS(n^1, INF)

(20) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)
plus(gen_0':s2_0(n484_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n484_0, b)), rt ∈ Ω(1 + n4840)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

(22) BOUNDS(n^1, INF)

(23) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(24) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

(25) BOUNDS(n^1, INF)

(26) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(27) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

(28) BOUNDS(n^1, INF)