(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(x), s(y)) →+ minus(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(minus(x, y), double(y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
double,
plusThey will be analysed ascendingly in the following order:
minus < plus
double < plus
(8) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
minus(
x,
y),
double(
y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
minus, double, plus
They will be analysed ascendingly in the following order:
minus < plus
double < plus
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
minus(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
minus(
x,
y),
double(
y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
double, plus
They will be analysed ascendingly in the following order:
double < plus
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_0':s2_0(
n244_0)) →
gen_0':s2_0(
*(
2,
n244_0)), rt ∈ Ω(1 + n244
0)
Induction Base:
double(gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s2_0(+(n244_0, 1))) →RΩ(1)
s(s(double(gen_0':s2_0(n244_0)))) →IH
s(s(gen_0':s2_0(*(2, c245_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
minus(
x,
y),
double(
y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s2_0(
n484_0),
gen_0':s2_0(
b)) →
gen_0':s2_0(
+(
n484_0,
b)), rt ∈ Ω(1 + n484
0)
Induction Base:
plus(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)
Induction Step:
plus(gen_0':s2_0(+(n484_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(plus(gen_0':s2_0(n484_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c485_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
minus(
x,
y),
double(
y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)
plus(gen_0':s2_0(n484_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n484_0, b)), rt ∈ Ω(1 + n4840)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
minus(
x,
y),
double(
y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)
plus(gen_0':s2_0(n484_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n484_0, b)), rt ∈ Ω(1 + n4840)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
minus(
x,
y),
double(
y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n244_0)) → gen_0':s2_0(*(2, n244_0)), rt ∈ Ω(1 + n2440)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
minus(
x,
y),
double(
y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
double :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(28) BOUNDS(n^1, INF)