0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 68 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 7 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
app(cons(x, l), k) → cons(x, app(l, k))
plus(s(x), y) → s(plus(x, y))
sum(cons(x, nil)) → cons(x, nil)
app(nil, k) → k
app(l, nil) → l
plus(0, y) → y
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
As the TRS is a non-duplicating overlay system, we have rc = irc.
app(cons(x, l), k) → cons(x, app(l, k))
plus(s(x), y) → s(plus(x, y))
sum(cons(x, nil)) → cons(x, nil)
app(nil, k) → k
app(l, nil) → l
plus(0, y) → y
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
Tuples:
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
app(nil, z0) → z0
app(z0, nil) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
sum(cons(z0, nil)) → cons(z0, nil)
sum(cons(z0, cons(z1, z2))) → sum(cons(plus(z0, z1), z2))
S tuples:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
APP(nil, z0) → c1
APP(z0, nil) → c2
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
PLUS(0, z0) → c4
SUM(cons(z0, nil)) → c5
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
K tuples:none
APP(cons(z0, z1), z2) → c(APP(z1, z2))
APP(nil, z0) → c1
APP(z0, nil) → c2
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
PLUS(0, z0) → c4
SUM(cons(z0, nil)) → c5
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
app, plus, sum
APP, PLUS, SUM
c, c1, c2, c3, c4, c5, c6
SUM(cons(z0, nil)) → c5
PLUS(0, z0) → c4
APP(nil, z0) → c1
APP(z0, nil) → c2
Tuples:
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
app(nil, z0) → z0
app(z0, nil) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
sum(cons(z0, nil)) → cons(z0, nil)
sum(cons(z0, cons(z1, z2))) → sum(cons(plus(z0, z1), z2))
S tuples:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
K tuples:none
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
app, plus, sum
APP, PLUS, SUM
c, c3, c6
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
app(nil, z0) → z0
app(z0, nil) → z0
sum(cons(z0, nil)) → cons(z0, nil)
sum(cons(z0, cons(z1, z2))) → sum(cons(plus(z0, z1), z2))
Tuples:
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
S tuples:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
K tuples:none
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
plus
APP, PLUS, SUM
c, c3, c6
We considered the (Usable) Rules:none
APP(cons(z0, z1), z2) → c(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
The order we found is given by the following interpretation:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
POL(0) = 0
POL(APP(x1, x2)) = x1
POL(PLUS(x1, x2)) = 0
POL(SUM(x1)) = x1
POL(c(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [1] + x2
POL(plus(x1, x2)) = 0
POL(s(x1)) = 0
Tuples:
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
S tuples:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
K tuples:
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
plus
APP, PLUS, SUM
c, c3, c6
We considered the (Usable) Rules:
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
And the Tuples:
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
The order we found is given by the following interpretation:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
POL(0) = 0
POL(APP(x1, x2)) = x1·x2
POL(PLUS(x1, x2)) = x1 + [2]x2
POL(SUM(x1)) = x1 + x12
POL(c(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [2] + x1 + x2
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = [1] + x1
Tuples:
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
S tuples:none
APP(cons(z0, z1), z2) → c(APP(z1, z2))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
Defined Rule Symbols:
APP(cons(z0, z1), z2) → c(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c6(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c3(PLUS(z0, z1))
plus
APP, PLUS, SUM
c, c3, c6