0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 16 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 136 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 38 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^3)), 262 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
The duplicating contexts are:
times([], s(y))
The defined contexts are:
plus([], x1)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Tuples:
times(z0, 0) → 0
times(z0, s(z1)) → plus(times(z0, z1), z0)
plus(z0, 0) → z0
plus(0, z0) → z0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(s(z0), z1) → s(plus(z0, z1))
S tuples:
TIMES(z0, 0) → c
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, 0) → c2
PLUS(0, z0) → c3
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:none
TIMES(z0, 0) → c
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, 0) → c2
PLUS(0, z0) → c3
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
times, plus
TIMES, PLUS
c, c1, c2, c3, c4, c5
TIMES(z0, 0) → c
PLUS(0, z0) → c3
PLUS(z0, 0) → c2
Tuples:
times(z0, 0) → 0
times(z0, s(z1)) → plus(times(z0, z1), z0)
plus(z0, 0) → z0
plus(0, z0) → z0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(s(z0), z1) → s(plus(z0, z1))
S tuples:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:none
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
times, plus
TIMES, PLUS
c1, c4, c5
We considered the (Usable) Rules:none
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
The order we found is given by the following interpretation:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
POL(0) = 0
POL(PLUS(x1, x2)) = [3]
POL(TIMES(x1, x2)) = [2]x2
POL(c1(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(plus(x1, x2)) = 0
POL(s(x1)) = [2] + x1
POL(times(x1, x2)) = 0
Tuples:
times(z0, 0) → 0
times(z0, s(z1)) → plus(times(z0, z1), z0)
plus(z0, 0) → z0
plus(0, z0) → z0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(s(z0), z1) → s(plus(z0, z1))
S tuples:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
Defined Rule Symbols:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
times, plus
TIMES, PLUS
c1, c4, c5
We considered the (Usable) Rules:none
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
The order we found is given by the following interpretation:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
POL(0) = 0
POL(PLUS(x1, x2)) = [2]x2
POL(TIMES(x1, x2)) = x2 + x1·x2
POL(c1(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(plus(x1, x2)) = [2]x1·x2
POL(s(x1)) = [2] + x1
POL(times(x1, x2)) = [1]
Tuples:
times(z0, 0) → 0
times(z0, s(z1)) → plus(times(z0, z1), z0)
plus(z0, 0) → z0
plus(0, z0) → z0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(s(z0), z1) → s(plus(z0, z1))
S tuples:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
Defined Rule Symbols:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
times, plus
TIMES, PLUS
c1, c4, c5
We considered the (Usable) Rules:
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
And the Tuples:
times(z0, s(z1)) → plus(times(z0, z1), z0)
plus(z0, s(z1)) → s(plus(z0, z1))
plus(s(z0), z1) → s(plus(z0, z1))
plus(z0, 0) → z0
plus(0, z0) → z0
times(z0, 0) → 0
The order we found is given by the following interpretation:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
POL(0) = 0
POL(PLUS(x1, x2)) = x1 + x2 + x22
POL(TIMES(x1, x2)) = x12·x2 + x1·x22
POL(c1(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = [1] + x1
POL(times(x1, x2)) = x1·x2
Tuples:
times(z0, 0) → 0
times(z0, s(z1)) → plus(times(z0, z1), z0)
plus(z0, 0) → z0
plus(0, z0) → z0
plus(z0, s(z1)) → s(plus(z0, z1))
plus(s(z0), z1) → s(plus(z0, z1))
S tuples:none
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
Defined Rule Symbols:
TIMES(z0, s(z1)) → c1(PLUS(times(z0, z1), z0), TIMES(z0, z1))
PLUS(z0, s(z1)) → c4(PLUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
times, plus
TIMES, PLUS
c1, c4, c5