0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 61 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 3 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 132 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 48 ms)
↳12 CdtProblem
↳13 CdtRuleRemovalProof (UPPER BOUND(ADD(n^3)), 78 ms)
↳14 CdtProblem
↳15 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 BOUNDS(1, 1)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
As the TRS is a non-duplicating overlay system, we have rc = irc.
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
Tuples:
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
S tuples:
APP(nil, z0) → c
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(nil) → c2
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(nil) → c4
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
K tuples:none
APP(nil, z0) → c
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(nil) → c2
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(nil) → c4
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
app, reverse, shuffle
APP, REVERSE, SHUFFLE
c, c1, c2, c3, c4, c5
APP(nil, z0) → c
SHUFFLE(nil) → c4
REVERSE(nil) → c2
Tuples:
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
S tuples:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
K tuples:none
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
app, reverse, shuffle
APP, REVERSE, SHUFFLE
c1, c3, c5
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
Tuples:
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
S tuples:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
K tuples:none
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
reverse, app
APP, REVERSE, SHUFFLE
c1, c3, c5
We considered the (Usable) Rules:
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
And the Tuples:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
The order we found is given by the following interpretation:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
POL(APP(x1, x2)) = 0
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = x1
POL(add(x1, x2)) = [1] + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
Tuples:
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
S tuples:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
K tuples:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
Defined Rule Symbols:
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
reverse, app
APP, REVERSE, SHUFFLE
c1, c3, c5
We considered the (Usable) Rules:
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
And the Tuples:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
The order we found is given by the following interpretation:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
POL(APP(x1, x2)) = 0
POL(REVERSE(x1)) = [1] + x1
POL(SHUFFLE(x1)) = [2]x12
POL(add(x1, x2)) = [1] + x1 + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
Tuples:
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
S tuples:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
K tuples:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
Defined Rule Symbols:
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
reverse, app
APP, REVERSE, SHUFFLE
c1, c3, c5
We considered the (Usable) Rules:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
And the Tuples:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
The order we found is given by the following interpretation:
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
POL(APP(x1, x2)) = x1 + x1·x2
POL(REVERSE(x1)) = [1] + x12
POL(SHUFFLE(x1)) = x1 + x12 + x13
POL(add(x1, x2)) = [1] + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
Tuples:
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
S tuples:none
APP(add(z0, z1), z2) → c1(APP(z1, z2))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
Defined Rule Symbols:
SHUFFLE(add(z0, z1)) → c5(SHUFFLE(reverse(z1)), REVERSE(z1))
REVERSE(add(z0, z1)) → c3(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
APP(add(z0, z1), z2) → c1(APP(z1, z2))
reverse, app
APP, REVERSE, SHUFFLE
c1, c3, c5