0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 5 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 122 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)), 31 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
The duplicating contexts are:
quot(s(x), s([]))
The defined contexts are:
quot([], s(x1))
minus([], x1)
[] just represents basic- or constructor-terms in the following defined contexts:
quot([], s(x1))
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
S tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, quot
MINUS, QUOT
c, c1, c2, c3
QUOT(0, s(z0)) → c2
MINUS(z0, 0) → c
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus, quot
MINUS, QUOT
c1, c3
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus
MINUS, QUOT
c1, c3
We considered the (Usable) Rules:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
POL(0) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
minus
MINUS, QUOT
c1, c3
We considered the (Usable) Rules:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
And the Tuples:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
The order we found is given by the following interpretation:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
POL(0) = 0
POL(MINUS(x1, x2)) = [2]x1
POL(QUOT(x1, x2)) = [2]x12
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
Tuples:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
S tuples:none
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
minus
MINUS, QUOT
c1, c3