We consider the following Problem: Strict Trs: { append(@l1, @l2) -> append#1(@l1, @l2) , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) , append#1(nil(), @l2) -> @l2 , subtrees(@t) -> subtrees#1(@t) , subtrees#1(leaf()) -> nil() , subtrees#1(node(@x, @t1, @t2)) -> subtrees#2(subtrees(@t1), @t1, @t2, @x) , subtrees#2(@l1, @t1, @t2, @x) -> subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x) , subtrees#3(@l2, @l1, @t1, @t2, @x) -> ::(node(@x, @t1, @t2), append(@l1, @l2))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { append(@l1, @l2) -> append#1(@l1, @l2) , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) , append#1(nil(), @l2) -> @l2 , subtrees(@t) -> subtrees#1(@t) , subtrees#1(leaf()) -> nil() , subtrees#1(node(@x, @t1, @t2)) -> subtrees#2(subtrees(@t1), @t1, @t2, @x) , subtrees#2(@l1, @t1, @t2, @x) -> subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x) , subtrees#3(@l2, @l1, @t1, @t2, @x) -> ::(node(@x, @t1, @t2), append(@l1, @l2))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {subtrees#1(leaf()) -> nil()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(append) = {}, Uargs(append#1) = {}, Uargs(::) = {2}, Uargs(subtrees) = {}, Uargs(subtrees#1) = {}, Uargs(node) = {}, Uargs(subtrees#2) = {1}, Uargs(subtrees#3) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: append(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [1 1] [0 0] [0] append#1(x1, x2) = [0 0] x1 + [1 0] x2 + [1]