(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a(a(f(x, y))) → f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) → a(f(x, y))
f(b(x), b(y)) → b(f(x, y))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(b(a(b(a(z0))))), A(b(a(z0))), A(z0), A(b(a(b(a(z1))))), A(b(a(z1))), A(z1))
F(a(z0), a(z1)) → c1(A(f(z0, z1)), F(z0, z1))
F(b(z0), b(z1)) → c2(F(z0, z1))
S tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(b(a(b(a(z0))))), A(b(a(z0))), A(z0), A(b(a(b(a(z1))))), A(b(a(z1))), A(z1))
F(a(z0), a(z1)) → c1(A(f(z0, z1)), F(z0, z1))
F(b(z0), b(z1)) → c2(F(z0, z1))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

A, F

Compound Symbols:

c, c1, c2

(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

F(a(z0), a(z1)) → c1(A(f(z0, z1)), F(z0, z1))
F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
S tuples:

F(a(z0), a(z1)) → c1(A(f(z0, z1)), F(z0, z1))
F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

F, A

Compound Symbols:

c1, c2, c

(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(a(z0), a(z1)) → c1(A(f(z0, z1)), F(z0, z1)) by

F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(A(b(f(z0, z1))), F(b(z0), b(z1)))
F(a(x0), a(x1)) → c1

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(A(b(f(z0, z1))), F(b(z0), b(z1)))
F(a(x0), a(x1)) → c1
S tuples:

F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(A(b(f(z0, z1))), F(b(z0), b(z1)))
F(a(x0), a(x1)) → c1
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

F, A

Compound Symbols:

c2, c, c1, c1

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a(x0), a(x1)) → c1

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(A(b(f(z0, z1))), F(b(z0), b(z1)))
S tuples:

F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(A(b(f(z0, z1))), F(b(z0), b(z1)))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

F, A

Compound Symbols:

c2, c, c1

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(F(b(z0), b(z1)))
S tuples:

F(b(z0), b(z1)) → c2(F(z0, z1))
A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(F(b(z0), b(z1)))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

F, A

Compound Symbols:

c2, c, c1, c1

(11) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(b(z0), b(z1)) → c2(F(z0, z1)) by

F(b(b(y0)), b(b(y1))) → c2(F(b(y0), b(y1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1))))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(F(b(z0), b(z1)))
F(b(b(y0)), b(b(y1))) → c2(F(b(y0), b(y1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1))))
S tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(a(b(z0)), a(b(z1))) → c1(F(b(z0), b(z1)))
F(b(b(y0)), b(b(y1))) → c2(F(b(y0), b(y1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1))))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

A, F

Compound Symbols:

c, c1, c1, c2

(13) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(a(b(z0)), a(b(z1))) → c1(F(b(z0), b(z1))) by

F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(b(y0)), b(b(y1))) → c2(F(b(y0), b(y1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1))))
F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
S tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(b(y0)), b(b(y1))) → c2(F(b(y0), b(y1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1))))
F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

A, F

Compound Symbols:

c, c1, c2, c1

(15) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(b(b(y0)), b(b(y1))) → c2(F(b(y0), b(y1))) by

F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1))))
F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
S tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1))))
F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

A, F

Compound Symbols:

c, c1, c2, c1

(17) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(b(a(b(y0))), b(a(b(y1)))) → c2(F(a(b(y0)), a(b(y1)))) by

F(b(a(b(b(y0)))), b(a(b(b(y1))))) → c2(F(a(b(b(y0))), a(b(b(y1)))))
F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))) → c2(F(a(b(a(a(y0)))), a(b(a(a(y1))))))
F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))) → c2(F(a(b(a(b(y0)))), a(b(a(b(y1))))))

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
F(b(a(b(b(y0)))), b(a(b(b(y1))))) → c2(F(a(b(b(y0))), a(b(b(y1)))))
F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))) → c2(F(a(b(a(a(y0)))), a(b(a(a(y1))))))
F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))) → c2(F(a(b(a(b(y0)))), a(b(a(b(y1))))))
S tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
F(b(a(b(b(y0)))), b(a(b(b(y1))))) → c2(F(a(b(b(y0))), a(b(b(y1)))))
F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))) → c2(F(a(b(a(a(y0)))), a(b(a(a(y1))))))
F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))) → c2(F(a(b(a(b(y0)))), a(b(a(b(y1))))))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

A, F

Compound Symbols:

c, c1, c2, c1

(19) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(a(b(b(y0))), a(b(b(y1)))) → c1(F(b(b(y0)), b(b(y1)))) by

F(a(b(b(b(y0)))), a(b(b(b(y1))))) → c1(F(b(b(b(y0))), b(b(b(y1)))))
F(a(b(b(a(a(y0))))), a(b(b(a(a(y1)))))) → c1(F(b(b(a(a(y0)))), b(b(a(a(y1))))))
F(a(b(b(a(b(y0))))), a(b(b(a(b(y1)))))) → c1(F(b(b(a(b(y0)))), b(b(a(b(y1))))))

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
F(b(a(b(b(y0)))), b(a(b(b(y1))))) → c2(F(a(b(b(y0))), a(b(b(y1)))))
F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))) → c2(F(a(b(a(a(y0)))), a(b(a(a(y1))))))
F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))) → c2(F(a(b(a(b(y0)))), a(b(a(b(y1))))))
F(a(b(b(b(y0)))), a(b(b(b(y1))))) → c1(F(b(b(b(y0))), b(b(b(y1)))))
F(a(b(b(a(a(y0))))), a(b(b(a(a(y1)))))) → c1(F(b(b(a(a(y0)))), b(b(a(a(y1))))))
F(a(b(b(a(b(y0))))), a(b(b(a(b(y1)))))) → c1(F(b(b(a(b(y0)))), b(b(a(b(y1))))))
S tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
F(b(a(b(b(y0)))), b(a(b(b(y1))))) → c2(F(a(b(b(y0))), a(b(b(y1)))))
F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))) → c2(F(a(b(a(a(y0)))), a(b(a(a(y1))))))
F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))) → c2(F(a(b(a(b(y0)))), a(b(a(b(y1))))))
F(a(b(b(b(y0)))), a(b(b(b(y1))))) → c1(F(b(b(b(y0))), b(b(b(y1)))))
F(a(b(b(a(a(y0))))), a(b(b(a(a(y1)))))) → c1(F(b(b(a(a(y0)))), b(b(a(a(y1))))))
F(a(b(b(a(b(y0))))), a(b(b(a(b(y1)))))) → c1(F(b(b(a(b(y0)))), b(b(a(b(y1))))))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

A, F

Compound Symbols:

c, c1, c2, c1

(21) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(a(b(a(b(y0)))), a(b(a(b(y1))))) → c1(F(b(a(b(y0))), b(a(b(y1))))) by

F(a(b(a(b(b(y0))))), a(b(a(b(b(y1)))))) → c1(F(b(a(b(b(y0)))), b(a(b(b(y1))))))
F(a(b(a(b(a(a(y0)))))), a(b(a(b(a(a(y1))))))) → c1(F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))))
F(a(b(a(b(a(b(y0)))))), a(b(a(b(a(b(y1))))))) → c1(F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))))

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(a(f(z0, z1))) → f(a(b(a(b(a(z0))))), a(b(a(b(a(z1))))))
f(a(z0), a(z1)) → a(f(z0, z1))
f(b(z0), b(z1)) → b(f(z0, z1))
Tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
F(b(a(b(b(y0)))), b(a(b(b(y1))))) → c2(F(a(b(b(y0))), a(b(b(y1)))))
F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))) → c2(F(a(b(a(a(y0)))), a(b(a(a(y1))))))
F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))) → c2(F(a(b(a(b(y0)))), a(b(a(b(y1))))))
F(a(b(b(b(y0)))), a(b(b(b(y1))))) → c1(F(b(b(b(y0))), b(b(b(y1)))))
F(a(b(b(a(a(y0))))), a(b(b(a(a(y1)))))) → c1(F(b(b(a(a(y0)))), b(b(a(a(y1))))))
F(a(b(b(a(b(y0))))), a(b(b(a(b(y1)))))) → c1(F(b(b(a(b(y0)))), b(b(a(b(y1))))))
F(a(b(a(b(b(y0))))), a(b(a(b(b(y1)))))) → c1(F(b(a(b(b(y0)))), b(a(b(b(y1))))))
F(a(b(a(b(a(a(y0)))))), a(b(a(b(a(a(y1))))))) → c1(F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))))
F(a(b(a(b(a(b(y0)))))), a(b(a(b(a(b(y1))))))) → c1(F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))))
S tuples:

A(a(f(z0, z1))) → c(F(a(b(a(b(a(z0))))), a(b(a(b(a(z1)))))), A(z0), A(z1))
F(a(a(z0)), a(a(z1))) → c1(A(a(f(z0, z1))), F(a(z0), a(z1)))
F(b(a(a(y0))), b(a(a(y1)))) → c2(F(a(a(y0)), a(a(y1))))
F(a(b(a(a(y0)))), a(b(a(a(y1))))) → c1(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(b(y0))), b(b(b(y1)))) → c2(F(b(b(y0)), b(b(y1))))
F(b(b(a(a(y0)))), b(b(a(a(y1))))) → c2(F(b(a(a(y0))), b(a(a(y1)))))
F(b(b(a(b(y0)))), b(b(a(b(y1))))) → c2(F(b(a(b(y0))), b(a(b(y1)))))
F(b(a(b(b(y0)))), b(a(b(b(y1))))) → c2(F(a(b(b(y0))), a(b(b(y1)))))
F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))) → c2(F(a(b(a(a(y0)))), a(b(a(a(y1))))))
F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))) → c2(F(a(b(a(b(y0)))), a(b(a(b(y1))))))
F(a(b(b(b(y0)))), a(b(b(b(y1))))) → c1(F(b(b(b(y0))), b(b(b(y1)))))
F(a(b(b(a(a(y0))))), a(b(b(a(a(y1)))))) → c1(F(b(b(a(a(y0)))), b(b(a(a(y1))))))
F(a(b(b(a(b(y0))))), a(b(b(a(b(y1)))))) → c1(F(b(b(a(b(y0)))), b(b(a(b(y1))))))
F(a(b(a(b(b(y0))))), a(b(a(b(b(y1)))))) → c1(F(b(a(b(b(y0)))), b(a(b(b(y1))))))
F(a(b(a(b(a(a(y0)))))), a(b(a(b(a(a(y1))))))) → c1(F(b(a(b(a(a(y0))))), b(a(b(a(a(y1)))))))
F(a(b(a(b(a(b(y0)))))), a(b(a(b(a(b(y1))))))) → c1(F(b(a(b(a(b(y0))))), b(a(b(a(b(y1)))))))
K tuples:none
Defined Rule Symbols:

a, f

Defined Pair Symbols:

A, F

Compound Symbols:

c, c1, c2, c1

(23) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2]
transitions:
b0(0) → 0
a0(0) → 1
f0(0, 0) → 2
f1(0, 0) → 3
b1(3) → 2
b1(3) → 3

(24) BOUNDS(O(1), O(n^1))