(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(a, a), x) → f(a, f(b, f(a, x)))
f(x, f(y, z)) → f(f(x, y), z)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, a), z0) → f(a, f(b, f(a, z0)))
f(z0, f(z1, z2)) → f(f(z0, z1), z2)
Tuples:
F(f(a, a), z0) → c(F(a, f(b, f(a, z0))), F(b, f(a, z0)), F(a, z0))
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
S tuples:
F(f(a, a), z0) → c(F(a, f(b, f(a, z0))), F(b, f(a, z0)), F(a, z0))
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c1
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
a),
z0) →
c(
F(
a,
f(
b,
f(
a,
z0))),
F(
b,
f(
a,
z0)),
F(
a,
z0)) by
F(f(a, a), z2) → c(F(a, f(f(b, a), z2)), F(b, f(a, z2)), F(a, z2))
F(f(a, a), f(z1, z2)) → c(F(a, f(b, f(f(a, z1), z2))), F(b, f(a, f(z1, z2))), F(a, f(z1, z2)))
F(f(a, a), x0) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, a), z0) → f(a, f(b, f(a, z0)))
f(z0, f(z1, z2)) → f(f(z0, z1), z2)
Tuples:
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
F(f(a, a), z2) → c(F(a, f(f(b, a), z2)), F(b, f(a, z2)), F(a, z2))
F(f(a, a), f(z1, z2)) → c(F(a, f(b, f(f(a, z1), z2))), F(b, f(a, f(z1, z2))), F(a, f(z1, z2)))
F(f(a, a), x0) → c
S tuples:
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
F(f(a, a), z2) → c(F(a, f(f(b, a), z2)), F(b, f(a, z2)), F(a, z2))
F(f(a, a), f(z1, z2)) → c(F(a, f(b, f(f(a, z1), z2))), F(b, f(a, f(z1, z2))), F(a, f(z1, z2)))
F(f(a, a), x0) → c
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(f(a, a), x0) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, a), z0) → f(a, f(b, f(a, z0)))
f(z0, f(z1, z2)) → f(f(z0, z1), z2)
Tuples:
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
F(f(a, a), z2) → c(F(a, f(f(b, a), z2)), F(b, f(a, z2)), F(a, z2))
F(f(a, a), f(z1, z2)) → c(F(a, f(b, f(f(a, z1), z2))), F(b, f(a, f(z1, z2))), F(a, f(z1, z2)))
S tuples:
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
F(f(a, a), z2) → c(F(a, f(f(b, a), z2)), F(b, f(a, z2)), F(a, z2))
F(f(a, a), f(z1, z2)) → c(F(a, f(b, f(f(a, z1), z2))), F(b, f(a, f(z1, z2))), F(a, f(z1, z2)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
a),
f(
z1,
z2)) →
c(
F(
a,
f(
b,
f(
f(
a,
z1),
z2))),
F(
b,
f(
a,
f(
z1,
z2))),
F(
a,
f(
z1,
z2))) by
F(f(a, a), f(x0, z2)) → c(F(a, f(f(b, f(a, x0)), z2)), F(b, f(a, f(x0, z2))), F(a, f(x0, z2)))
F(f(a, a), f(a, z0)) → c(F(a, f(b, f(a, f(b, f(a, z0))))), F(b, f(a, f(a, z0))), F(a, f(a, z0)))
F(f(a, a), f(f(z1, z2), x1)) → c(F(a, f(b, f(f(f(a, z1), z2), x1))), F(b, f(a, f(f(z1, z2), x1))), F(a, f(f(z1, z2), x1)))
F(f(a, a), f(x0, x1)) → c(F(b, f(a, f(x0, x1))), F(a, f(x0, x1)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, a), z0) → f(a, f(b, f(a, z0)))
f(z0, f(z1, z2)) → f(f(z0, z1), z2)
Tuples:
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
F(f(a, a), z2) → c(F(a, f(f(b, a), z2)), F(b, f(a, z2)), F(a, z2))
F(f(a, a), f(x0, z2)) → c(F(a, f(f(b, f(a, x0)), z2)), F(b, f(a, f(x0, z2))), F(a, f(x0, z2)))
F(f(a, a), f(a, z0)) → c(F(a, f(b, f(a, f(b, f(a, z0))))), F(b, f(a, f(a, z0))), F(a, f(a, z0)))
F(f(a, a), f(f(z1, z2), x1)) → c(F(a, f(b, f(f(f(a, z1), z2), x1))), F(b, f(a, f(f(z1, z2), x1))), F(a, f(f(z1, z2), x1)))
F(f(a, a), f(x0, x1)) → c(F(b, f(a, f(x0, x1))), F(a, f(x0, x1)))
S tuples:
F(z0, f(z1, z2)) → c1(F(f(z0, z1), z2), F(z0, z1))
F(f(a, a), z2) → c(F(a, f(f(b, a), z2)), F(b, f(a, z2)), F(a, z2))
F(f(a, a), f(x0, z2)) → c(F(a, f(f(b, f(a, x0)), z2)), F(b, f(a, f(x0, z2))), F(a, f(x0, z2)))
F(f(a, a), f(a, z0)) → c(F(a, f(b, f(a, f(b, f(a, z0))))), F(b, f(a, f(a, z0))), F(a, f(a, z0)))
F(f(a, a), f(f(z1, z2), x1)) → c(F(a, f(b, f(f(f(a, z1), z2), x1))), F(b, f(a, f(f(z1, z2), x1))), F(a, f(f(z1, z2), x1)))
F(f(a, a), f(x0, x1)) → c(F(b, f(a, f(x0, x1))), F(a, f(x0, x1)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c, c
(9) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 0.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
b0() → 0
f0(0, 0) → 1
(10) BOUNDS(O(1), O(n^1))