(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, x)) → a(s, a(s, a(d, a(p, a(s, x)))))
a(f, a(s, x)) → a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(f, 0) → c(A(s, 0))
A(d, a(s, z0)) → c2(A(s, a(s, a(d, a(p, a(s, z0))))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
S tuples:
A(f, 0) → c(A(s, 0))
A(d, a(s, z0)) → c2(A(s, a(s, a(d, a(p, a(s, z0))))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c, c2, c3
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(f, 0) → c(A(s, 0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, z0)) → c2(A(s, a(s, a(d, a(p, a(s, z0))))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
S tuples:
A(d, a(s, z0)) → c2(A(s, a(s, a(d, a(p, a(s, z0))))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c3
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
d,
a(
s,
z0)) →
c2(
A(
s,
a(
s,
a(
d,
a(
p,
a(
s,
z0))))),
A(
s,
a(
d,
a(
p,
a(
s,
z0)))),
A(
d,
a(
p,
a(
s,
z0))),
A(
p,
a(
s,
z0)),
A(
s,
z0)) by
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, x0)) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, x0)) → c2
S tuples:
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, x0)) → c2
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c3, c2, c2
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(d, a(s, x0)) → c2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
S tuples:
A(f, a(s, z0)) → c3(A(d, a(f, a(p, a(s, z0)))), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c3, c2
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
f,
a(
s,
z0)) →
c3(
A(
d,
a(
f,
a(
p,
a(
s,
z0)))),
A(
f,
a(
p,
a(
s,
z0))),
A(
p,
a(
s,
z0)),
A(
s,
z0)) by
A(f, a(s, z0)) → c3(A(d, a(f, z0)), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, x0)) → c3
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, z0)), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, x0)) → c3
S tuples:
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, z0)), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, x0)) → c3
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c3, c3
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(f, a(s, x0)) → c3
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, z0)), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
S tuples:
A(d, a(s, z0)) → c2(A(s, a(s, a(d, z0))), A(s, a(d, a(p, a(s, z0)))), A(d, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(f, a(s, z0)) → c3(A(d, a(f, z0)), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c3
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
d,
a(
s,
z0)) →
c2(
A(
s,
a(
s,
a(
d,
z0))),
A(
s,
a(
d,
a(
p,
a(
s,
z0)))),
A(
d,
a(
p,
a(
s,
z0))),
A(
p,
a(
s,
z0)),
A(
s,
z0)) by
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(f, a(s, z0)) → c3(A(d, a(f, z0)), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
S tuples:
A(f, a(s, z0)) → c3(A(d, a(f, z0)), A(f, a(p, a(s, z0))), A(p, a(s, z0)), A(s, z0))
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c3, c2, c2
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
f,
a(
s,
z0)) →
c3(
A(
d,
a(
f,
z0)),
A(
f,
a(
p,
a(
s,
z0))),
A(
p,
a(
s,
z0)),
A(
s,
z0)) by
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
S tuples:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c2, c3, c3
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
f,
a(
s,
0)) →
c3(
A(
d,
a(
s,
0)),
A(
f,
a(
p,
a(
s,
0))),
A(
p,
a(
s,
0)),
A(
s,
0)) by
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
S tuples:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
K tuples:none
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c2, c3, c3
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
We considered the (Usable) Rules:
a(p, a(s, z0)) → z0
a(f, 0) → a(s, 0)
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
And the Tuples:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(A(x1, x2)) = x1
POL(a(x1, x2)) = [5]x1
POL(c2(x1, x2)) = x1 + x2
POL(c2(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c3(x1)) = x1
POL(c3(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(d) = 0
POL(f) = [1]
POL(p) = 0
POL(s) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
S tuples:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
K tuples:
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c2, c3, c3
(21) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, a(p, a(s, 0))), A(p, a(s, 0)), A(s, 0)) by A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, 0), A(p, a(s, 0)), A(s, 0))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, 0), A(p, a(s, 0)), A(s, 0))
S tuples:
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, 0), A(p, a(s, 0)), A(s, 0))
K tuples:
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c2, c3, c3
(23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(d, a(s, 0)) → c2(A(s, a(s, 0)), A(s, a(d, a(p, a(s, 0)))), A(d, 0), A(p, a(s, 0)), A(s, 0))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
S tuples:
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
K tuples:
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c2, c3, c3
(25) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0))) by A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(s, z0)), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(f, 0) → a(s, 0)
a(d, 0) → 0
a(d, a(s, z0)) → a(s, a(s, a(d, a(p, a(s, z0)))))
a(f, a(s, z0)) → a(d, a(f, a(p, a(s, z0))))
a(p, a(s, z0)) → z0
Tuples:
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(s, z0)), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
S tuples:
A(d, a(s, x0)) → c2(A(s, a(d, a(p, a(s, x0)))), A(d, a(p, a(s, x0))))
A(f, a(s, a(s, z0))) → c3(A(d, a(d, a(f, a(p, a(s, z0))))), A(f, a(p, a(s, a(s, z0)))), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
A(f, a(s, x0)) → c3(A(f, a(p, a(s, x0))))
A(f, a(s, 0)) → c3(A(d, a(s, 0)), A(f, 0), A(p, a(s, 0)), A(s, 0))
A(d, a(s, a(s, z0))) → c2(A(s, a(s, a(s, a(s, a(d, a(p, a(s, z0))))))), A(s, a(d, a(p, a(s, a(s, z0))))), A(d, a(s, z0)), A(p, a(s, a(s, z0))), A(s, a(s, z0)))
K tuples:
A(f, a(s, 0)) → c3(A(d, a(s, 0)))
Defined Rule Symbols:
a
Defined Pair Symbols:
A
Compound Symbols:
c2, c3, c3, c2
(27) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
f0() → 0
00() → 0
s0() → 0
d0() → 0
p0() → 0
a0(0, 0) → 1
s1() → 2
01() → 3
a1(2, 3) → 1
01() → 1
(28) BOUNDS(O(1), O(n^1))