(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, f(b, f(a, x))) → f(a, f(b, f(b, f(a, x))))
f(b, f(b, f(b, x))) → f(b, f(b, x))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(b, f(a, z0))) → f(a, f(b, f(b, f(a, z0))))
f(b, f(b, f(b, z0))) → f(b, f(b, z0))
Tuples:
F(a, f(b, f(a, z0))) → c(F(a, f(b, f(b, f(a, z0)))), F(b, f(b, f(a, z0))), F(b, f(a, z0)), F(a, z0))
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
S tuples:
F(a, f(b, f(a, z0))) → c(F(a, f(b, f(b, f(a, z0)))), F(b, f(b, f(a, z0))), F(b, f(a, z0)), F(a, z0))
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c1
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
b,
f(
a,
z0))) →
c(
F(
a,
f(
b,
f(
b,
f(
a,
z0)))),
F(
b,
f(
b,
f(
a,
z0))),
F(
b,
f(
a,
z0)),
F(
a,
z0)) by
F(a, f(b, f(a, x0))) → c(F(a, x0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(b, f(a, z0))) → f(a, f(b, f(b, f(a, z0))))
f(b, f(b, f(b, z0))) → f(b, f(b, z0))
Tuples:
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
F(a, f(b, f(a, x0))) → c(F(a, x0))
S tuples:
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
F(a, f(b, f(a, x0))) → c(F(a, x0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
F(a, f(b, f(a, x0))) → c(F(a, x0))
We considered the (Usable) Rules:none
And the Tuples:
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
F(a, f(b, f(a, x0))) → c(F(a, x0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = x1 + [4]x2
POL(a) = 0
POL(b) = [4]
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(f(x1, x2)) = [2]x1 + [4]x2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(b, f(a, z0))) → f(a, f(b, f(b, f(a, z0))))
f(b, f(b, f(b, z0))) → f(b, f(b, z0))
Tuples:
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
F(a, f(b, f(a, x0))) → c(F(a, x0))
S tuples:none
K tuples:
F(b, f(b, f(b, z0))) → c1(F(b, f(b, z0)), F(b, z0))
F(a, f(b, f(a, x0))) → c(F(a, x0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))