We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), f(c(), x))
, f(a(), f(b(), x)) -> f(b(), f(a(), x))
, f(d(), f(c(), x)) -> f(d(), f(a(), x))
, f(a(), f(c(), x)) -> f(c(), f(a(), x))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), f(c(), x))
, f(a(), f(b(), x)) -> f(b(), f(a(), x))
, f(d(), f(c(), x)) -> f(d(), f(a(), x))
, f(a(), f(c(), x)) -> f(c(), f(a(), x))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {f(d(), f(c(), x)) -> f(d(), f(a(), x))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {2}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [0 3] x1 + [1 0] x2 + [1]
[0 0] [0 1] [1]
a() = [0]
[0]
b() = [0]
[0]
c() = [0]
[1]
d() = [0]
[0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), f(c(), x))
, f(a(), f(b(), x)) -> f(b(), f(a(), x))
, f(a(), f(c(), x)) -> f(c(), f(a(), x))}
Weak Trs: {f(d(), f(c(), x)) -> f(d(), f(a(), x))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ f(a(), x) -> f(b(), f(c(), x))
, f(a(), f(b(), x)) -> f(b(), f(a(), x))
, f(a(), f(c(), x)) -> f(c(), f(a(), x))}
Weak Trs: {f(d(), f(c(), x)) -> f(d(), f(a(), x))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2, 2) -> 1
, f_1(3, 4) -> 1
, f_1(5, 2) -> 4
, a_0() -> 2
, b_0() -> 2
, b_1() -> 3
, c_0() -> 2
, c_1() -> 5
, d_0() -> 2}
Hurray, we answered YES(?,O(n^1))