(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
S tuples:
F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c2, c3, c4
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
S tuples:
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
b,
z0)) →
c2(
F(
b,
f(
a,
z0)),
F(
a,
z0)) by
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2
S tuples:
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2, c2
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(a, f(b, x0)) → c2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
S tuples:
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
d,
f(
c,
z0)) →
c3(
F(
d,
f(
a,
z0)),
F(
a,
z0)) by
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, x0)) → c3
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, x0)) → c3
S tuples:
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, x0)) → c3
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c4, c2, c3, c3
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(d, f(c, x0)) → c3
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
S tuples:
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c4, c2, c3
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
c,
z0)) →
c4(
F(
c,
f(
a,
z0)),
F(
a,
z0)) by
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, x0)) → c4
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, x0)) → c4
S tuples:
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, x0)) → c4
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4, c4
(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(a, f(c, x0)) → c4
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
S tuples:
F(a, f(b, z0)) → c2(F(b, f(b, f(c, z0))), F(a, z0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
b,
z0)) →
c2(
F(
b,
f(
b,
f(
c,
z0))),
F(
a,
z0)) by
F(a, f(b, x0)) → c2(F(a, x0))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
S tuples:
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4, c2
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
b,
f(
b,
z0))) →
c2(
F(
b,
f(
b,
f(
a,
z0))),
F(
a,
f(
b,
z0))) by
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(b, x0))) → c2
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(b, x0))) → c2
S tuples:
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(b, x0))) → c2
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4, c2, c2
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(a, f(b, f(b, x0))) → c2
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
S tuples:
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(a, z0))), F(a, f(c, z0)))
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4, c2
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
b,
f(
c,
z0))) →
c2(
F(
b,
f(
c,
f(
a,
z0))),
F(
a,
f(
c,
z0))) by
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(a, f(b, f(c, x0))) → c2
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(a, f(b, f(c, x0))) → c2
S tuples:
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(a, f(b, f(c, x0))) → c2
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2, c2, c2
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(a, f(b, f(c, x0))) → c2
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
S tuples:
F(d, f(c, z0)) → c3(F(d, f(b, f(c, z0))), F(a, z0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2, c2
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
d,
f(
c,
z0)) →
c3(
F(
d,
f(
b,
f(
c,
z0))),
F(
a,
z0)) by
F(d, f(c, x0)) → c3(F(a, x0))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
S tuples:
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2, c2, c3
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(d, f(c, x0)) → c3(F(a, x0))
We considered the (Usable) Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
And the Tuples:
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = x1
POL(a) = 0
POL(b) = 0
POL(c) = 0
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(d) = [1]
POL(f(x1, x2)) = [2]
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
S tuples:
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(a, z0))), F(a, f(b, z0)))
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
K tuples:
F(d, f(c, x0)) → c3(F(a, x0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2, c2, c3
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
d,
f(
c,
f(
b,
z0))) →
c3(
F(
d,
f(
b,
f(
a,
z0))),
F(
a,
f(
b,
z0))) by
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(d, f(c, f(b, x0))) → c3
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(d, f(c, f(b, x0))) → c3
S tuples:
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(d, f(c, f(b, x0))) → c3
K tuples:
F(d, f(c, x0)) → c3(F(a, x0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2, c2, c3, c3
(33) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(d, f(c, f(b, x0))) → c3
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, x0)) → c3(F(a, x0))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
S tuples:
F(d, f(c, f(c, z0))) → c3(F(d, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(c, z0)) → c4(F(c, f(b, f(c, z0))), F(a, z0))
F(a, f(c, f(b, z0))) → c4(F(c, f(b, f(a, z0))), F(a, f(b, z0)))
F(a, f(c, f(c, z0))) → c4(F(c, f(c, f(a, z0))), F(a, f(c, z0)))
F(a, f(b, x0)) → c2(F(a, x0))
F(a, f(b, f(b, z0))) → c2(F(b, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(a, f(b, f(b, f(b, z0)))) → c2(F(b, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(a, f(b, f(b, f(c, z0)))) → c2(F(b, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
F(a, f(b, f(c, z0))) → c2(F(b, f(c, f(b, f(c, z0)))), F(a, f(c, z0)))
F(a, f(b, f(c, f(b, z0)))) → c2(F(b, f(c, f(b, f(a, z0)))), F(a, f(c, f(b, z0))))
F(a, f(b, f(c, f(c, z0)))) → c2(F(b, f(c, f(c, f(a, z0)))), F(a, f(c, f(c, z0))))
F(d, f(c, f(b, z0))) → c3(F(d, f(b, f(b, f(c, z0)))), F(a, f(b, z0)))
F(d, f(c, f(b, f(b, z0)))) → c3(F(d, f(b, f(b, f(a, z0)))), F(a, f(b, f(b, z0))))
F(d, f(c, f(b, f(c, z0)))) → c3(F(d, f(b, f(c, f(a, z0)))), F(a, f(b, f(c, z0))))
K tuples:
F(d, f(c, x0)) → c3(F(a, x0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c3, c4, c2, c2, c3
(35) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
b0() → 0
c0() → 0
d0() → 0
f0(0, 0) → 1
b1() → 2
c1() → 4
f1(4, 0) → 3
f1(2, 3) → 1
(36) BOUNDS(O(1), O(n^1))