(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(a, x) → f(b, f(c, x))
f(a, f(b, x)) → f(b, f(a, x))
f(d, f(c, x)) → f(d, f(a, x))
f(a, f(c, x)) → f(c, f(a, x))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
S tuples:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c1, c2, c3, c4

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

F(a, f(b, z0)) → c2(F(b, f(a, z0)), F(a, z0))
F(d, f(c, z0)) → c3(F(d, f(a, z0)), F(a, z0))
F(a, f(c, z0)) → c4(F(c, f(a, z0)), F(a, z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
S tuples:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c1

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a, z0) → c1(F(b, f(c, z0)), F(c, z0))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, z0) → f(b, f(c, z0))
f(a, f(b, z0)) → f(b, f(a, z0))
f(d, f(c, z0)) → f(d, f(a, z0))
f(a, f(c, z0)) → f(c, f(a, z0))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))