(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(x, a), a) → f(f(f(x, a), f(a, a)), a)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), a) → f(f(f(z0, a), f(a, a)), a)
Tuples:
F(f(z0, a), a) → c(F(f(f(z0, a), f(a, a)), a), F(f(z0, a), f(a, a)), F(z0, a), F(a, a))
S tuples:
F(f(z0, a), a) → c(F(f(f(z0, a), f(a, a)), a), F(f(z0, a), f(a, a)), F(z0, a), F(a, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
z0,
a),
a) →
c(
F(
f(
f(
z0,
a),
f(
a,
a)),
a),
F(
f(
z0,
a),
f(
a,
a)),
F(
z0,
a),
F(
a,
a)) by
F(f(x0, a), a) → c(F(x0, a))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), a) → f(f(f(z0, a), f(a, a)), a)
Tuples:
F(f(x0, a), a) → c(F(x0, a))
S tuples:
F(f(x0, a), a) → c(F(x0, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(f(x0, a), a) → c(F(x0, a))
We considered the (Usable) Rules:none
And the Tuples:
F(f(x0, a), a) → c(F(x0, a))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x1
POL(a) = [3]
POL(c(x1)) = x1
POL(f(x1, x2)) = [1] + [4]x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), a) → f(f(f(z0, a), f(a, a)), a)
Tuples:
F(f(x0, a), a) → c(F(x0, a))
S tuples:none
K tuples:
F(f(x0, a), a) → c(F(x0, a))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))