(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, f(a, y)) → f(a, f(f(a, h(f(a, x))), y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(z0, f(a, z1)) → c(F(a, f(f(a, h(f(a, z0))), z1)), F(f(a, h(f(a, z0))), z1), F(a, h(f(a, z0))), F(a, z0))
S tuples:
F(z0, f(a, z1)) → c(F(a, f(f(a, h(f(a, z0))), z1)), F(f(a, h(f(a, z0))), z1), F(a, h(f(a, z0))), F(a, z0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
z0,
f(
a,
z1)) →
c(
F(
a,
f(
f(
a,
h(
f(
a,
z0))),
z1)),
F(
f(
a,
h(
f(
a,
z0))),
z1),
F(
a,
h(
f(
a,
z0))),
F(
a,
z0)) by
F(f(a, z1), f(a, x1)) → c(F(a, f(f(a, h(f(a, f(f(a, h(f(a, a))), z1)))), x1)), F(f(a, h(f(a, f(a, z1)))), x1), F(a, h(f(a, f(a, z1)))), F(a, f(a, z1)))
F(x0, f(a, x1)) → c(F(f(a, h(f(a, x0))), x1))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, z1), f(a, x1)) → c(F(a, f(f(a, h(f(a, f(f(a, h(f(a, a))), z1)))), x1)), F(f(a, h(f(a, f(a, z1)))), x1), F(a, h(f(a, f(a, z1)))), F(a, f(a, z1)))
F(x0, f(a, x1)) → c(F(f(a, h(f(a, x0))), x1))
S tuples:
F(f(a, z1), f(a, x1)) → c(F(a, f(f(a, h(f(a, f(f(a, h(f(a, a))), z1)))), x1)), F(f(a, h(f(a, f(a, z1)))), x1), F(a, h(f(a, f(a, z1)))), F(a, f(a, z1)))
F(x0, f(a, x1)) → c(F(f(a, h(f(a, x0))), x1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
z1),
f(
a,
x1)) →
c(
F(
a,
f(
f(
a,
h(
f(
a,
f(
f(
a,
h(
f(
a,
a))),
z1)))),
x1)),
F(
f(
a,
h(
f(
a,
f(
a,
z1)))),
x1),
F(
a,
h(
f(
a,
f(
a,
z1)))),
F(
a,
f(
a,
z1))) by
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(x0, f(a, x1)) → c(F(f(a, h(f(a, x0))), x1))
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
S tuples:
F(x0, f(a, x1)) → c(F(f(a, h(f(a, x0))), x1))
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(7) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
F(
x0,
f(
a,
x1)) →
c(
F(
f(
a,
h(
f(
a,
x0))),
x1)) by
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
S tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
We considered the (Usable) Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
And the Tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [4]x1 + [4]x2
POL(a) = 0
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(f(x1, x2)) = [1] + [4]x2
POL(h(x1)) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
S tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
K tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
h(
y0)),
f(
a,
z1)) →
c(
F(
f(
a,
h(
f(
a,
f(
a,
h(
y0))))),
z1)) by
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
F(f(a, h(x0)), f(a, x1)) → c
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
F(f(a, h(x0)), f(a, x1)) → c
S tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
K tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c, c
(13) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(f(a, h(x0)), f(a, x1)) → c
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
S tuples:
F(f(a, x0), f(a, x1)) → c(F(f(a, h(f(a, f(a, x0)))), x1), F(a, h(f(a, f(a, x0)))), F(a, f(a, x0)))
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(15) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
F(
f(
a,
x0),
f(
a,
x1)) →
c(
F(
f(
a,
h(
f(
a,
f(
a,
x0)))),
x1),
F(
a,
h(
f(
a,
f(
a,
x0)))),
F(
a,
f(
a,
x0))) by
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
S tuples:
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
We considered the (Usable) Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
And the Tuples:
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x1 + [4]x2
POL(a) = 0
POL(c(x1)) = x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(f(x1, x2)) = [1] + [4]x2
POL(h(x1)) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
S tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
K tuples:
F(a, f(a, x0)) → c(F(f(a, h(f(a, a))), x0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(19) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
F(
a,
f(
a,
x0)) →
c(
F(
f(
a,
h(
f(
a,
a))),
x0)) by
F(a, f(a, h(x0))) → c(F(f(a, h(f(a, a))), h(x0)))
F(a, f(a, h(f(a, a)))) → c(F(f(a, h(f(a, a))), h(f(a, a))))
F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))) → c(F(f(a, h(f(a, a))), h(f(a, f(f(a, h(f(a, a))), h(x0))))))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
F(a, f(a, h(x0))) → c(F(f(a, h(f(a, a))), h(x0)))
F(a, f(a, h(f(a, a)))) → c(F(f(a, h(f(a, a))), h(f(a, a))))
F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))) → c(F(f(a, h(f(a, a))), h(f(a, f(f(a, h(f(a, a))), h(x0))))))
S tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
K tuples:
F(a, f(a, h(x0))) → c(F(f(a, h(f(a, a))), h(x0)))
F(a, f(a, h(f(a, a)))) → c(F(f(a, h(f(a, a))), h(f(a, a))))
F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))) → c(F(f(a, h(f(a, a))), h(f(a, f(f(a, h(f(a, a))), h(x0))))))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))) → c(F(f(a, h(f(a, a))), h(f(a, f(f(a, h(f(a, a))), h(x0))))))
F(a, f(a, h(x0))) → c(F(f(a, h(f(a, a))), h(x0)))
F(a, f(a, h(f(a, a)))) → c(F(f(a, h(f(a, a))), h(f(a, a))))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, h(x0)), f(a, x1)) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), x1))
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
S tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(23) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
f(
a,
h(
x0)),
f(
a,
x1)) →
c(
F(
f(
a,
h(
f(
a,
f(
f(
a,
h(
f(
a,
a))),
h(
x0))))),
x1)) by
F(f(a, h(z0)), f(a, f(a, y1))) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(z0))))), f(a, y1)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
F(f(a, h(z0)), f(a, f(a, y1))) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(z0))))), f(a, y1)))
S tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(25) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
F(f(a, h(z0)), f(a, f(a, y1))) → c(F(f(a, h(f(a, f(f(a, h(f(a, a))), h(z0))))), f(a, y1)))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(a, z1)) → f(a, f(f(a, h(f(a, z0))), z1))
Tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
S tuples:
F(f(a, h(y0)), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(y0))))), z1), F(a, h(f(a, f(a, h(y0))))), F(a, f(a, h(y0))))
F(f(a, h(f(a, a))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, a)))))), z1), F(a, h(f(a, f(a, h(f(a, a)))))), F(a, f(a, h(f(a, a)))))
F(f(a, h(f(a, f(f(a, h(f(a, a))), h(x0))))), f(a, z1)) → c(F(f(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), z1), F(a, h(f(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))), F(a, f(a, h(f(a, f(f(a, h(f(a, a))), h(x0)))))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(27) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 0.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
h0(0) → 0
f0(0, 0) → 1
(28) BOUNDS(O(1), O(n^1))