(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, f(y, a)) → f(a, f(f(x, a), y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(z0, f(z1, a)) → c(F(a, f(f(z0, a), z1)), F(f(z0, a), z1), F(z0, a))
S tuples:
F(z0, f(z1, a)) → c(F(a, f(f(z0, a), z1)), F(f(z0, a), z1), F(z0, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
z0,
f(
z1,
a)) →
c(
F(
a,
f(
f(
z0,
a),
z1)),
F(
f(
z0,
a),
z1),
F(
z0,
a)) by
F(x0, f(x1, a)) → c(F(a, f(f(x0, a), x1)), F(f(x0, a), x1))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(x0, f(x1, a)) → c(F(a, f(f(x0, a), x1)), F(f(x0, a), x1))
S tuples:
F(x0, f(x1, a)) → c(F(a, f(f(x0, a), x1)), F(f(x0, a), x1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(5) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
F(
x0,
f(
x1,
a)) →
c(
F(
a,
f(
f(
x0,
a),
x1)),
F(
f(
x0,
a),
x1)) by
F(a, f(z1, a)) → c(F(a, f(f(a, a), z1)), F(f(a, a), z1))
F(f(x0, a), f(z1, a)) → c(F(a, f(f(f(x0, a), a), z1)), F(f(f(x0, a), a), z1))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(a, f(z1, a)) → c(F(a, f(f(a, a), z1)), F(f(a, a), z1))
F(f(x0, a), f(z1, a)) → c(F(a, f(f(f(x0, a), a), z1)), F(f(f(x0, a), a), z1))
S tuples:
F(a, f(z1, a)) → c(F(a, f(f(a, a), z1)), F(f(a, a), z1))
F(f(x0, a), f(z1, a)) → c(F(a, f(f(f(x0, a), a), z1)), F(f(f(x0, a), a), z1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(7) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
F(
f(
x0,
a),
f(
z1,
a)) →
c(
F(
a,
f(
f(
f(
x0,
a),
a),
z1)),
F(
f(
f(
x0,
a),
a),
z1)) by
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(a, f(z1, a)) → c(F(a, f(f(a, a), z1)), F(f(a, a), z1))
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
S tuples:
F(a, f(z1, a)) → c(F(a, f(f(a, a), z1)), F(f(a, a), z1))
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(9) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
a,
f(
z1,
a)) →
c(
F(
a,
f(
f(
a,
a),
z1)),
F(
f(
a,
a),
z1)) by
F(a, f(a, a)) → c(F(a, f(f(a, a), a)), F(f(a, a), a))
F(a, f(f(y0, a), a)) → c(F(a, f(f(a, a), f(y0, a))), F(f(a, a), f(y0, a)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)), F(f(a, a), a))
F(a, f(f(y0, a), a)) → c(F(a, f(f(a, a), f(y0, a))), F(f(a, a), f(y0, a)))
S tuples:
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)), F(f(a, a), a))
F(a, f(f(y0, a), a)) → c(F(a, f(f(a, a), f(y0, a))), F(f(a, a), f(y0, a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
a,
a)) →
c(
F(
a,
f(
f(
a,
a),
a)),
F(
f(
a,
a),
a)) by
F(a, f(a, a)) → c(F(a, f(f(a, a), a)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(f(y0, a), a)) → c(F(a, f(f(a, a), f(y0, a))), F(f(a, a), f(y0, a)))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)))
S tuples:
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(f(y0, a), a)) → c(F(a, f(f(a, a), f(y0, a))), F(f(a, a), f(y0, a)))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
f(
y0,
a),
a)) →
c(
F(
a,
f(
f(
a,
a),
f(
y0,
a))),
F(
f(
a,
a),
f(
y0,
a))) by
F(a, f(f(z1, a), a)) → c(F(a, f(a, f(f(f(a, a), a), z1))), F(f(a, a), f(z1, a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(x0, a)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)))
F(a, f(f(z1, a), a)) → c(F(a, f(a, f(f(f(a, a), a), z1))), F(f(a, a), f(z1, a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(x0, a)))
S tuples:
F(f(a, a), f(z1, a)) → c(F(a, f(f(f(a, a), a), z1)), F(f(f(a, a), a), z1))
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)))
F(a, f(f(z1, a), a)) → c(F(a, f(a, f(f(f(a, a), a), z1))), F(f(a, a), f(z1, a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(x0, a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(15) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
f(
a,
a),
f(
z1,
a)) →
c(
F(
a,
f(
f(
f(
a,
a),
a),
z1)),
F(
f(
f(
a,
a),
a),
z1)) by
F(f(a, a), f(f(y1, a), a)) → c(F(a, f(f(f(a, a), a), f(y1, a))), F(f(f(a, a), a), f(y1, a)))
F(f(a, a), f(a, a)) → c(F(a, f(f(f(a, a), a), a)), F(f(f(a, a), a), a))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, a)) → f(a, f(f(z0, a), z1))
Tuples:
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)))
F(a, f(f(z1, a), a)) → c(F(a, f(a, f(f(f(a, a), a), z1))), F(f(a, a), f(z1, a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(x0, a)))
F(f(a, a), f(f(y1, a), a)) → c(F(a, f(f(f(a, a), a), f(y1, a))), F(f(f(a, a), a), f(y1, a)))
F(f(a, a), f(a, a)) → c(F(a, f(f(f(a, a), a), a)), F(f(f(a, a), a), a))
S tuples:
F(f(f(x0, a), a), f(z1, a)) → c(F(a, f(f(f(f(x0, a), a), a), z1)), F(f(f(f(x0, a), a), a), z1))
F(a, f(a, a)) → c(F(a, f(f(a, a), a)))
F(a, f(f(z1, a), a)) → c(F(a, f(a, f(f(f(a, a), a), z1))), F(f(a, a), f(z1, a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(x0, a)))
F(f(a, a), f(f(y1, a), a)) → c(F(a, f(f(f(a, a), a), f(y1, a))), F(f(f(a, a), a), f(y1, a)))
F(f(a, a), f(a, a)) → c(F(a, f(f(f(a, a), a), a)), F(f(f(a, a), a), a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(17) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 0.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
f0(0, 0) → 1
(18) BOUNDS(O(1), O(n^1))