(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(a, x), y) → h(h(f(f(x, f(a, y)), a)))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, z0), z1) → c(F(f(z0, f(a, z1)), a), F(z0, f(a, z1)), F(a, z1))
S tuples:

F(f(a, z0), z1) → c(F(f(z0, f(a, z1)), a), F(z0, f(a, z1)), F(a, z1))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(f(a, z0), z1) → c(F(f(z0, f(a, z1)), a), F(z0, f(a, z1)), F(a, z1)) by

F(f(a, x0), x1) → c(F(f(x0, f(a, x1)), a), F(x0, f(a, x1)))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, x0), x1) → c(F(f(x0, f(a, x1)), a), F(x0, f(a, x1)))
S tuples:

F(f(a, x0), x1) → c(F(f(x0, f(a, x1)), a), F(x0, f(a, x1)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(5) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(f(a, x0), x1) → c(F(f(x0, f(a, x1)), a), F(x0, f(a, x1))) by

F(f(a, z0), a) → c(F(f(z0, f(a, a)), a), F(z0, f(a, a)))
F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, z0), a) → c(F(f(z0, f(a, a)), a), F(z0, f(a, a)))
F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
S tuples:

F(f(a, z0), a) → c(F(f(z0, f(a, a)), a), F(z0, f(a, a)))
F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(7) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(f(a, z0), a) → c(F(f(z0, f(a, a)), a), F(z0, f(a, a))) by

F(f(a, a), a) → c(F(f(a, f(a, a)), a), F(a, f(a, a)))
F(f(a, f(a, y0)), a) → c(F(f(f(a, y0), f(a, a)), a), F(f(a, y0), f(a, a)))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
F(f(a, a), a) → c(F(f(a, f(a, a)), a), F(a, f(a, a)))
F(f(a, f(a, y0)), a) → c(F(f(f(a, y0), f(a, a)), a), F(f(a, y0), f(a, a)))
S tuples:

F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
F(f(a, a), a) → c(F(f(a, f(a, a)), a), F(a, f(a, a)))
F(f(a, f(a, y0)), a) → c(F(f(f(a, y0), f(a, a)), a), F(f(a, y0), f(a, a)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(f(a, a), a) → c(F(f(a, f(a, a)), a), F(a, f(a, a))) by

F(f(a, a), a) → c(F(f(a, f(a, a)), a))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
F(f(a, f(a, y0)), a) → c(F(f(f(a, y0), f(a, a)), a), F(f(a, y0), f(a, a)))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
S tuples:

F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
F(f(a, f(a, y0)), a) → c(F(f(f(a, y0), f(a, a)), a), F(f(a, y0), f(a, a)))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(f(a, f(a, y0)), a) → c(F(f(f(a, y0), f(a, a)), a), F(f(a, y0), f(a, a))) by

F(f(a, f(a, z0)), a) → c(F(h(h(f(f(z0, f(a, f(a, a))), a))), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, x0)), a) → c(F(f(a, x0), f(a, a)))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, f(a, z0)), a) → c(F(h(h(f(f(z0, f(a, f(a, a))), a))), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, x0)), a) → c(F(f(a, x0), f(a, a)))
S tuples:

F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1))))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, f(a, z0)), a) → c(F(h(h(f(f(z0, f(a, f(a, a))), a))), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, x0)), a) → c(F(f(a, x0), f(a, a)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(13) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(f(a, z0), f(a, x1)) → c(F(f(z0, f(a, f(a, x1))), a), F(z0, f(a, f(a, x1)))) by

F(f(a, z0), f(a, f(a, x1))) → c(F(f(z0, f(a, f(a, f(a, x1)))), a), F(z0, f(a, f(a, f(a, x1)))))
F(f(a, x0), f(a, a)) → c(F(f(x0, f(a, f(a, a))), a), F(x0, f(a, f(a, a))))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, f(a, z0)), a) → c(F(h(h(f(f(z0, f(a, f(a, a))), a))), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, x0)), a) → c(F(f(a, x0), f(a, a)))
F(f(a, z0), f(a, f(a, x1))) → c(F(f(z0, f(a, f(a, f(a, x1)))), a), F(z0, f(a, f(a, f(a, x1)))))
F(f(a, x0), f(a, a)) → c(F(f(x0, f(a, f(a, a))), a), F(x0, f(a, f(a, a))))
S tuples:

F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, f(a, z0)), a) → c(F(h(h(f(f(z0, f(a, f(a, a))), a))), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, x0)), a) → c(F(f(a, x0), f(a, a)))
F(f(a, z0), f(a, f(a, x1))) → c(F(f(z0, f(a, f(a, f(a, x1)))), a), F(z0, f(a, f(a, f(a, x1)))))
F(f(a, x0), f(a, a)) → c(F(f(x0, f(a, f(a, a))), a), F(x0, f(a, f(a, a))))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(15) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(f(a, z0), f(a, f(a, x1))) → c(F(f(z0, f(a, f(a, f(a, x1)))), a), F(z0, f(a, f(a, f(a, x1))))) by

F(f(a, a), f(a, f(a, z1))) → c(F(f(a, f(a, f(a, f(a, z1)))), a), F(a, f(a, f(a, f(a, z1)))))
F(f(a, f(a, y0)), f(a, f(a, z1))) → c(F(f(f(a, y0), f(a, f(a, f(a, z1)))), a), F(f(a, y0), f(a, f(a, f(a, z1)))))

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a, z0), z1) → h(h(f(f(z0, f(a, z1)), a)))
Tuples:

F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, f(a, z0)), a) → c(F(h(h(f(f(z0, f(a, f(a, a))), a))), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, x0)), a) → c(F(f(a, x0), f(a, a)))
F(f(a, x0), f(a, a)) → c(F(f(x0, f(a, f(a, a))), a), F(x0, f(a, f(a, a))))
F(f(a, a), f(a, f(a, z1))) → c(F(f(a, f(a, f(a, f(a, z1)))), a), F(a, f(a, f(a, f(a, z1)))))
F(f(a, f(a, y0)), f(a, f(a, z1))) → c(F(f(f(a, y0), f(a, f(a, f(a, z1)))), a), F(f(a, y0), f(a, f(a, f(a, z1)))))
S tuples:

F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, f(a, z0)), a) → c(F(h(h(f(f(z0, f(a, f(a, a))), a))), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, x0)), a) → c(F(f(a, x0), f(a, a)))
F(f(a, x0), f(a, a)) → c(F(f(x0, f(a, f(a, a))), a), F(x0, f(a, f(a, a))))
F(f(a, a), f(a, f(a, z1))) → c(F(f(a, f(a, f(a, f(a, z1)))), a), F(a, f(a, f(a, f(a, z1)))))
F(f(a, f(a, y0)), f(a, f(a, z1))) → c(F(f(f(a, y0), f(a, f(a, f(a, z1)))), a), F(f(a, y0), f(a, f(a, f(a, z1)))))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(17) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 0.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
h0(0) → 0
f0(0, 0) → 1

(18) BOUNDS(O(1), O(n^1))