(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(x)) → f(g(f(x), x))
f(f(x)) → f(h(f(x), f(x)))
g(x, y) → y
h(x, x) → g(x, 0)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → f(g(f(z0), z0))
f(f(z0)) → f(h(f(z0), f(z0)))
g(z0, z1) → z1
h(z0, z0) → g(z0, 0)
Tuples:

F(f(z0)) → c(F(g(f(z0), z0)), G(f(z0), z0), F(z0))
F(f(z0)) → c1(F(h(f(z0), f(z0))), H(f(z0), f(z0)), F(z0), F(z0))
H(z0, z0) → c3(G(z0, 0))
S tuples:

F(f(z0)) → c(F(g(f(z0), z0)), G(f(z0), z0), F(z0))
F(f(z0)) → c1(F(h(f(z0), f(z0))), H(f(z0), f(z0)), F(z0), F(z0))
H(z0, z0) → c3(G(z0, 0))
K tuples:none
Defined Rule Symbols:

f, g, h

Defined Pair Symbols:

F, H

Compound Symbols:

c, c1, c3

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

F(f(z0)) → c(F(g(f(z0), z0)), G(f(z0), z0), F(z0))
F(f(z0)) → c1(F(h(f(z0), f(z0))), H(f(z0), f(z0)), F(z0), F(z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → f(g(f(z0), z0))
f(f(z0)) → f(h(f(z0), f(z0)))
g(z0, z1) → z1
h(z0, z0) → g(z0, 0)
Tuples:

H(z0, z0) → c3(G(z0, 0))
S tuples:

H(z0, z0) → c3(G(z0, 0))
K tuples:none
Defined Rule Symbols:

f, g, h

Defined Pair Symbols:

H

Compound Symbols:

c3

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

H(z0, z0) → c3(G(z0, 0))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → f(g(f(z0), z0))
f(f(z0)) → f(h(f(z0), f(z0)))
g(z0, z1) → z1
h(z0, z0) → g(z0, 0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f, g, h

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))