(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
:(x, x) → e
:(x, e) → x
i(:(x, y)) → :(y, x)
:(:(x, y), z) → :(x, :(z, i(y)))
:(e, x) → i(x)
i(i(x)) → x
i(e) → e
:(x, :(y, i(x))) → i(y)
:(x, :(y, :(i(x), z))) → :(i(z), y)
:(i(x), :(y, x)) → i(y)
:(i(x), :(y, :(x, z))) → :(i(z), y)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
:(z0, z0) → e
:(z0, e) → z0
:(:(z0, z1), z2) → :(z0, :(z2, i(z1)))
:(e, z0) → i(z0)
:(z0, :(z1, i(z0))) → i(z1)
:(z0, :(z1, :(i(z0), z2))) → :(i(z2), z1)
:(i(z0), :(z1, z0)) → i(z1)
:(i(z0), :(z1, :(z0, z2))) → :(i(z2), z1)
i(:(z0, z1)) → :(z1, z0)
i(i(z0)) → z0
i(e) → e
Tuples:
:'(:(z0, z1), z2) → c2(:'(z0, :(z2, i(z1))), :'(z2, i(z1)), I(z1))
:'(e, z0) → c3(I(z0))
:'(z0, :(z1, i(z0))) → c4(I(z1))
:'(z0, :(z1, :(i(z0), z2))) → c5(:'(i(z2), z1), I(z2))
:'(i(z0), :(z1, z0)) → c6(I(z1))
:'(i(z0), :(z1, :(z0, z2))) → c7(:'(i(z2), z1), I(z2))
I(:(z0, z1)) → c8(:'(z1, z0))
S tuples:
:'(:(z0, z1), z2) → c2(:'(z0, :(z2, i(z1))), :'(z2, i(z1)), I(z1))
:'(e, z0) → c3(I(z0))
:'(z0, :(z1, i(z0))) → c4(I(z1))
:'(z0, :(z1, :(i(z0), z2))) → c5(:'(i(z2), z1), I(z2))
:'(i(z0), :(z1, z0)) → c6(I(z1))
:'(i(z0), :(z1, :(z0, z2))) → c7(:'(i(z2), z1), I(z2))
I(:(z0, z1)) → c8(:'(z1, z0))
K tuples:none
Defined Rule Symbols:
:, i
Defined Pair Symbols:
:', I
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
:'(:(z0, z1), z2) → c2(:'(z0, :(z2, i(z1))), :'(z2, i(z1)), I(z1))
:'(e, z0) → c3(I(z0))
:'(z0, :(z1, i(z0))) → c4(I(z1))
:'(z0, :(z1, :(i(z0), z2))) → c5(:'(i(z2), z1), I(z2))
:'(i(z0), :(z1, z0)) → c6(I(z1))
:'(i(z0), :(z1, :(z0, z2))) → c7(:'(i(z2), z1), I(z2))
I(:(z0, z1)) → c8(:'(z1, z0))
We considered the (Usable) Rules:
:(z0, :(z1, :(i(z0), z2))) → :(i(z2), z1)
:(:(z0, z1), z2) → :(z0, :(z2, i(z1)))
:(i(z0), :(z1, :(z0, z2))) → :(i(z2), z1)
:(e, z0) → i(z0)
:(z0, z0) → e
:(z0, e) → z0
:(z0, :(z1, i(z0))) → i(z1)
:(i(z0), :(z1, z0)) → i(z1)
i(:(z0, z1)) → :(z1, z0)
i(i(z0)) → z0
i(e) → e
And the Tuples:
:'(:(z0, z1), z2) → c2(:'(z0, :(z2, i(z1))), :'(z2, i(z1)), I(z1))
:'(e, z0) → c3(I(z0))
:'(z0, :(z1, i(z0))) → c4(I(z1))
:'(z0, :(z1, :(i(z0), z2))) → c5(:'(i(z2), z1), I(z2))
:'(i(z0), :(z1, z0)) → c6(I(z1))
:'(i(z0), :(z1, :(z0, z2))) → c7(:'(i(z2), z1), I(z2))
I(:(z0, z1)) → c8(:'(z1, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(:(x1, x2)) = [3] + [3]x1 + [3]x2 + [2]x1·x2
POL(:'(x1, x2)) = [3]x1 + x2 + [2]x1·x2
POL(I(x1)) = [2]x1
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(e) = [1]
POL(i(x1)) = x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
:(z0, z0) → e
:(z0, e) → z0
:(:(z0, z1), z2) → :(z0, :(z2, i(z1)))
:(e, z0) → i(z0)
:(z0, :(z1, i(z0))) → i(z1)
:(z0, :(z1, :(i(z0), z2))) → :(i(z2), z1)
:(i(z0), :(z1, z0)) → i(z1)
:(i(z0), :(z1, :(z0, z2))) → :(i(z2), z1)
i(:(z0, z1)) → :(z1, z0)
i(i(z0)) → z0
i(e) → e
Tuples:
:'(:(z0, z1), z2) → c2(:'(z0, :(z2, i(z1))), :'(z2, i(z1)), I(z1))
:'(e, z0) → c3(I(z0))
:'(z0, :(z1, i(z0))) → c4(I(z1))
:'(z0, :(z1, :(i(z0), z2))) → c5(:'(i(z2), z1), I(z2))
:'(i(z0), :(z1, z0)) → c6(I(z1))
:'(i(z0), :(z1, :(z0, z2))) → c7(:'(i(z2), z1), I(z2))
I(:(z0, z1)) → c8(:'(z1, z0))
S tuples:none
K tuples:
:'(:(z0, z1), z2) → c2(:'(z0, :(z2, i(z1))), :'(z2, i(z1)), I(z1))
:'(e, z0) → c3(I(z0))
:'(z0, :(z1, i(z0))) → c4(I(z1))
:'(z0, :(z1, :(i(z0), z2))) → c5(:'(i(z2), z1), I(z2))
:'(i(z0), :(z1, z0)) → c6(I(z1))
:'(i(z0), :(z1, :(z0, z2))) → c7(:'(i(z2), z1), I(z2))
I(:(z0, z1)) → c8(:'(z1, z0))
Defined Rule Symbols:
:, i
Defined Pair Symbols:
:', I
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))