We consider the following Problem: Strict Trs: { f1() -> g1() , f1() -> g2() , f2() -> g1() , f2() -> g2() , g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , h1() -> i() , h2() -> i() , e1(h1(), h2(), x, y, z) -> e2(x, x, y, z, z) , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , e2(f1(), x, y, z, f2()) -> e3(x, y, x, y, y, z, y, z, x, y, z) , e2(x, x, y, z, z) -> e6(x, y, z) , e2(i(), x, y, z, i()) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e4(g1(), x1, g2(), x1, g1(), x1, g2(), x1, x, y, z) -> e1(x1, x1, x, y, z) , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x) , e5(i(), x, y, z) -> e6(x, y, z)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { e1(h1(), h2(), x, y, z) -> e2(x, x, y, z, z) , e4(g1(), x1, g2(), x1, g1(), x1, g2(), x1, x, y, z) -> e1(x1, x1, x, y, z) , e2(f1(), x, y, z, f2()) -> e3(x, y, x, y, y, z, y, z, x, y, z)} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { f1() -> g1() , f1() -> g2() , f2() -> g1() , f2() -> g2() , g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , h1() -> i() , h2() -> i() , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , e2(x, x, y, z, z) -> e6(x, y, z) , e2(i(), x, y, z, i()) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x) , e5(i(), x, y, z) -> e6(x, y, z)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [2] [0] g1() = [0] [0] g2() = [0] [0] f2() = [0] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0] [1 1] [0 0] [0 0] [0 0] [0 0] [0] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [1 1] x4 + [0 0] x5 + [1] [0 0] [1 1] [0 0] [0 0] [1 1] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [0] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [1 1] [0 0] [1 1] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f2() -> g1() , f2() -> g2() , g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , h1() -> i() , h2() -> i() , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , e2(i(), x, y, z, i()) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e5(i(), x, y, z) -> e6(x, y, z)} Weak Trs: { f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [0] [0] g1() = [0] [0] g2() = [0] [0] f2() = [2] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0 0] x4 + [1 1] x5 + [0] [1 1] [0 0] [0 0] [0 0] [0 0] [0] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [1] [0 0] [1 1] [1 1] [0 0] [1 1] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [0] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [0 0] [1 1] [1 1] [1 1] [0 0] [0] e6(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0] [0 0] [1 1] [0 0] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [1] [0 0] [1 1] [0 0] [1 1] [1 1] [0 0] [0 0] [1 1] [0 0] [1 1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , h1() -> i() , h2() -> i() , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e5(i(), x, y, z) -> e6(x, y, z)} Weak Trs: { f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {h1() -> i()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [0] [0] g1() = [0] [0] g2() = [0] [0] f2() = [0] [0] h1() = [2] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0] [1 1] [0 0] [0 0] [0 0] [0 0] [0] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1] [0 0] [1 1] [0 0] [1 1] [0 0] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [0] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [1 1] [0 0] [1 1] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , h2() -> i() , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e5(i(), x, y, z) -> e6(x, y, z)} Weak Trs: { h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {h2() -> i()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [0] [0] g1() = [0] [0] g2() = [0] [0] f2() = [0] [0] h1() = [0] [0] h2() = [2] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0] [1 1] [0 0] [0 0] [0 0] [0 0] [0] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1] [0 0] [1 1] [0 0] [1 1] [0 0] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [0] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [1 1] [0 0] [1 1] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e5(i(), x, y, z) -> e6(x, y, z)} Weak Trs: { h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {e1(x1, x1, x, y, z) -> e5(x1, x, y, z)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [0] [0] g1() = [0] [0] g2() = [0] [0] f2() = [0] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2] [1 1] [0 0] [0 0] [0 0] [0 0] [2] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1] [0 0] [1 1] [0 0] [1 1] [0 0] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [0] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [1 1] [0 0] [1 1] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e5(i(), x, y, z) -> e6(x, y, z)} Weak Trs: { e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [0] [0] g1() = [0] [0] g2() = [0] [0] f2() = [0] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [0 0] x4 + [1 1] x5 + [2] [1 1] [0 0] [0 1] [0 0] [0 0] [2] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [1] [0 0] [1 1] [1 1] [0 0] [1 1] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [2] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [0 0] [1 1] [1 1] [1 1] [0 0] [2] e6(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0] [0 0] [1 1] [0 0] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 1] x5 + [1 0] x6 + [1 0] x7 + [0 1] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [1] [0 0] [1 1] [0 0] [1 1] [1 0] [0 1] [0 1] [1 0] [0 0] [1 1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , e5(i(), x, y, z) -> e6(x, y, z)} Weak Trs: { e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {e5(i(), x, y, z) -> e6(x, y, z)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [0] [0] g1() = [0] [0] g2() = [0] [0] f2() = [0] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2] [1 1] [0 0] [0 0] [0 0] [1 1] [2] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1] [0 0] [1 1] [0 0] [1 1] [0 0] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [1 1] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [2] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g1() -> h1() , g1() -> h2() , g2() -> h1() , g2() -> h2() , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z)} Weak Trs: { e5(i(), x, y, z) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { g1() -> h1() , g1() -> h2()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [2] [0] g1() = [1] [0] g2() = [0] [0] f2() = [2] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2] [1 1] [0 0] [0 0] [0 0] [1 1] [2] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1] [0 0] [1 1] [0 0] [1 1] [0 0] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [1 1] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [2] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g2() -> h1() , g2() -> h2() , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z)} Weak Trs: { g1() -> h1() , g1() -> h2() , e5(i(), x, y, z) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { g2() -> h1() , g2() -> h2()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [2] [0] g1() = [0] [0] g2() = [1] [0] f2() = [2] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2] [1 1] [0 0] [0 0] [0 0] [1 1] [2] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1] [0 0] [1 1] [0 0] [1 1] [0 0] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [1 1] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [2] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z)} Weak Trs: { g2() -> h1() , g2() -> h2() , g1() -> h1() , g1() -> h2() , e5(i(), x, y, z) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {}, Uargs(e6) = {}, Uargs(e4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f1() = [0] [0] g1() = [0] [0] g2() = [0] [0] f2() = [0] [0] h1() = [0] [0] h2() = [0] [0] i() = [0] [0] e1(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0] [0 0] [1 1] [0 0] [0 0] [1 1] [2] e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1] [0 0] [1 1] [0 0] [1 1] [0 0] [1] e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0] [0 0] [0 0] [0 0] [1 1] [1] e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2] [1 1] [0 0] [0 0] [1 1] [1 1] [0 0] [1 1] [0 0] [1 1] [0 0] [1 1] [2] e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [1 1] [0] e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , g2() -> h1() , g2() -> h2() , g1() -> h1() , g1() -> h2() , e5(i(), x, y, z) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) -> e5(x1, x, y, z) , g2() -> h1() , g2() -> h2() , g1() -> h1() , g1() -> h2() , e5(i(), x, y, z) -> e6(x, y, z) , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) -> e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z) , e1(x1, x1, x, y, z) -> e5(x1, x, y, z) , h2() -> i() , h1() -> i() , f2() -> g1() , f2() -> g2() , e2(i(), x, y, z, i()) -> e6(x, y, z) , f1() -> g1() , f1() -> g2() , e2(x, x, y, z, z) -> e6(x, y, z) , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))