We consider the following Problem: Strict Trs: { active(and(tt(), X)) -> mark(X) , active(plus(N, 0())) -> mark(N) , active(plus(N, s(M))) -> mark(s(plus(N, M))) , mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(tt()) -> active(tt()) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(0()) -> active(0()) , mark(s(X)) -> active(s(mark(X))) , and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { active(and(tt(), X)) -> mark(X) , active(plus(N, 0())) -> mark(N) , active(plus(N, s(M))) -> mark(s(plus(N, M))) , mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(tt()) -> active(tt()) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(0()) -> active(0()) , mark(s(X)) -> active(s(mark(X))) , and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(and) = {1}, Uargs(mark) = {1}, Uargs(plus) = {1, 2}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [1 0] [1] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] tt() = [0] [0] mark(x1) = [1 0] x1 + [1] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(and(tt(), X)) -> mark(X) , active(plus(N, 0())) -> mark(N) , active(plus(N, s(M))) -> mark(s(plus(N, M))) , mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(tt()) -> active(tt()) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(0()) -> active(0()) , mark(s(X)) -> active(s(mark(X)))} Weak Trs: { and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { mark(tt()) -> active(tt()) , mark(0()) -> active(0())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(and) = {1}, Uargs(mark) = {1}, Uargs(plus) = {1, 2}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [1 0] [1] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] tt() = [0] [0] mark(x1) = [1 0] x1 + [3] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(and(tt(), X)) -> mark(X) , active(plus(N, 0())) -> mark(N) , active(plus(N, s(M))) -> mark(s(plus(N, M))) , mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(s(X)) -> active(s(mark(X)))} Weak Trs: { mark(tt()) -> active(tt()) , mark(0()) -> active(0()) , and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {active(plus(N, 0())) -> mark(N)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(and) = {1}, Uargs(mark) = {1}, Uargs(plus) = {1, 2}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [1 0] [1] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] tt() = [0] [0] mark(x1) = [1 0] x1 + [1] [1 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [3] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(and(tt(), X)) -> mark(X) , active(plus(N, s(M))) -> mark(s(plus(N, M))) , mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(s(X)) -> active(s(mark(X)))} Weak Trs: { active(plus(N, 0())) -> mark(N) , mark(tt()) -> active(tt()) , mark(0()) -> active(0()) , and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {active(and(tt(), X)) -> mark(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(and) = {1}, Uargs(mark) = {1}, Uargs(plus) = {1, 2}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] tt() = [1] [0] mark(x1) = [1 0] x1 + [0] [0 0] [0] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(plus(N, s(M))) -> mark(s(plus(N, M))) , mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(s(X)) -> active(s(mark(X)))} Weak Trs: { active(and(tt(), X)) -> mark(X) , active(plus(N, 0())) -> mark(N) , mark(tt()) -> active(tt()) , mark(0()) -> active(0()) , and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {active(plus(N, s(M))) -> mark(s(plus(N, M)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(and) = {1}, Uargs(mark) = {1}, Uargs(plus) = {1, 2}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 2] x1 + [0] [0 0] [1] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [2] tt() = [0] [0] mark(x1) = [1 0] x1 + [0] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [2] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(s(X)) -> active(s(mark(X)))} Weak Trs: { active(plus(N, s(M))) -> mark(s(plus(N, M))) , active(and(tt(), X)) -> mark(X) , active(plus(N, 0())) -> mark(N) , mark(tt()) -> active(tt()) , mark(0()) -> active(0()) , and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { mark(and(X1, X2)) -> active(and(mark(X1), X2)) , mark(plus(X1, X2)) -> active(plus(mark(X1), mark(X2))) , mark(s(X)) -> active(s(mark(X)))} Weak Trs: { active(plus(N, s(M))) -> mark(s(plus(N, M))) , active(and(tt(), X)) -> mark(X) , active(plus(N, 0())) -> mark(N) , mark(tt()) -> active(tt()) , mark(0()) -> active(0()) , and(mark(X1), X2) -> and(X1, X2) , and(X1, mark(X2)) -> and(X1, X2) , and(active(X1), X2) -> and(X1, X2) , and(X1, active(X2)) -> and(X1, X2) , plus(mark(X1), X2) -> plus(X1, X2) , plus(X1, mark(X2)) -> plus(X1, X2) , plus(active(X1), X2) -> plus(X1, X2) , plus(X1, active(X2)) -> plus(X1, X2) , s(mark(X)) -> s(X) , s(active(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 0. The enriched problem is compatible with the following automaton: { active_0(2) -> 1 , and_0(2, 2) -> 1 , tt_0() -> 2 , mark_0(2) -> 1 , plus_0(2, 2) -> 1 , 0_0() -> 2 , s_0(2) -> 1} Hurray, we answered YES(?,O(n^1))