We consider the following Problem:

  Strict Trs:
    {  U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))
     , U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
     , plus(N, 0()) -> N
     , plus(N, s(M)) -> U11(tt(), M, N)
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))
       , U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
       , plus(N, 0()) -> N
       , plus(N, s(M)) -> U11(tt(), M, N)
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component: {plus(N, 0()) -> N}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {},
        Uargs(s) = {1}, Uargs(plus) = {1, 2}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       U11(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                         [0 1]      [1 0]      [0 0]      [1]
       tt() = [0]
              [0]
       U12(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                         [0 0]      [1 0]      [0 0]      [1]
       activate(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
       s(x1) = [1 0] x1 + [1]
               [0 0]      [1]
       plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 0]      [1]
       0() = [2]
             [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))
         , U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
         , plus(N, s(M)) -> U11(tt(), M, N)
         , activate(X) -> X}
      Weak Trs: {plus(N, 0()) -> N}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {plus(N, s(M)) -> U11(tt(), M, N)}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {},
          Uargs(s) = {1}, Uargs(plus) = {1, 2}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         U11(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                           [0 1]      [0 0]      [0 0]      [1]
         tt() = [0]
                [0]
         U12(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                           [1 0]      [1 0]      [0 0]      [1]
         activate(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
         s(x1) = [1 0] x1 + [3]
                 [0 0]      [1]
         plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                        [0 1]      [0 0]      [1]
         0() = [0]
               [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))
           , U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
           , activate(X) -> X}
        Weak Trs:
          {  plus(N, s(M)) -> U11(tt(), M, N)
           , plus(N, 0()) -> N}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component:
          {U12(tt(), M, N) -> s(plus(activate(N), activate(M)))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {},
            Uargs(s) = {1}, Uargs(plus) = {1, 2}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           U11(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                             [0 0]      [0 0]      [1 1]      [0]
           tt() = [3]
                  [1]
           U12(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [3]
                             [1 1]      [1 0]      [0 0]      [1]
           activate(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           s(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
           plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                          [1 1]      [0 0]      [0]
           0() = [0]
                 [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))
             , activate(X) -> X}
          Weak Trs:
            {  U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
             , plus(N, s(M)) -> U11(tt(), M, N)
             , plus(N, 0()) -> N}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {activate(X) -> X}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {},
              Uargs(s) = {1}, Uargs(plus) = {1, 2}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             U11(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                               [0 0]      [0 0]      [0 1]      [1]
             tt() = [1]
                    [3]
             U12(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [3]
                               [1 1]      [1 0]      [0 1]      [1]
             activate(x1) = [1 0] x1 + [2]
                            [0 1]      [0]
             s(x1) = [1 0] x1 + [0]
                     [0 1]      [3]
             plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 1]      [0 0]      [1]
             0() = [0]
                   [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))}
            Weak Trs:
              {  activate(X) -> X
               , U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
               , plus(N, s(M)) -> U11(tt(), M, N)
               , plus(N, 0()) -> N}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            We consider the following Problem:
            
              Strict Trs:
                {U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))}
              Weak Trs:
                {  activate(X) -> X
                 , U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
                 , plus(N, s(M)) -> U11(tt(), M, N)
                 , plus(N, 0()) -> N}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              We have computed the following dependency pairs
              
                Strict DPs:
                  {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                Weak DPs:
                  {  activate^#(X) -> c_2()
                   , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                   , plus^#(N, s(M)) -> U11^#(tt(), M, N)
                   , plus^#(N, 0()) -> c_5()}
              
              We consider the following Problem:
              
                Strict DPs:
                  {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                Strict Trs:
                  {U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))}
                Weak DPs:
                  {  activate^#(X) -> c_2()
                   , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                   , plus^#(N, s(M)) -> U11^#(tt(), M, N)
                   , plus^#(N, 0()) -> c_5()}
                Weak Trs:
                  {  activate(X) -> X
                   , U12(tt(), M, N) -> s(plus(activate(N), activate(M)))
                   , plus(N, s(M)) -> U11(tt(), M, N)
                   , plus(N, 0()) -> N}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We replace strict/weak-rules by the corresponding usable rules:
                
                  Weak Usable Rules: {activate(X) -> X}
                
                We consider the following Problem:
                
                  Strict DPs:
                    {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                  Weak DPs:
                    {  activate^#(X) -> c_2()
                     , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                     , plus^#(N, s(M)) -> U11^#(tt(), M, N)
                     , plus^#(N, 0()) -> c_5()}
                  Weak Trs: {activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  We consider the following Problem:
                  
                    Strict DPs:
                      {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                    Weak DPs:
                      {  activate^#(X) -> c_2()
                       , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                       , plus^#(N, s(M)) -> U11^#(tt(), M, N)
                       , plus^#(N, 0()) -> c_5()}
                    Weak Trs: {activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We use following congruence DG for path analysis
                    
                    ->2:{1,4,3}                                                 [   YES(O(1),O(1))   ]
                       |
                       `->3:{5}                                                 [   YES(O(1),O(1))   ]
                    
                    ->1:{2}                                                     [   YES(O(1),O(1))   ]
                    
                    
                    Here dependency-pairs are as follows:
                    
                    Strict DPs:
                      {1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                    WeakDPs DPs:
                      {  2: activate^#(X) -> c_2()
                       , 3: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                       , 4: plus^#(N, s(M)) -> U11^#(tt(), M, N)
                       , 5: plus^#(N, 0()) -> c_5()}
                    
                    * Path 2:{1,4,3}: YES(O(1),O(1))
                      ------------------------------
                      
                      We consider the following Problem:
                      
                        Strict DPs:
                          {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                        Weak Trs: {activate(X) -> X}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the the dependency-graph
                        
                          1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))
                          
                        
                        together with the congruence-graph
                        
                          ->1:{1}                                                     Noncyclic, trivial, SCC
                          
                          
                          Here dependency-pairs are as follows:
                          
                          Strict DPs:
                            {1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                        
                        The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                        
                          {1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                        
                        We consider the following Problem:
                        
                          Weak Trs: {activate(X) -> X}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Weak Trs: {activate(X) -> X}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded
                    
                    * Path 2:{1,4,3}->3:{5}: YES(O(1),O(1))
                      -------------------------------------
                      
                      We consider the following Problem:
                      
                        Weak DPs:
                          {  plus^#(N, s(M)) -> U11^#(tt(), M, N)
                           , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                           , U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                        Weak Trs: {activate(X) -> X}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the the dependency-graph
                        
                          1: plus^#(N, s(M)) -> U11^#(tt(), M, N)
                             -->_1 U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N)) :3
                          
                          2: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                             -->_1 plus^#(N, s(M)) -> U11^#(tt(), M, N) :1
                          
                          3: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))
                             -->_1 U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) :2
                          
                        
                        together with the congruence-graph
                        
                          ->1:{1,2,3}                                                 Weak SCC
                          
                          
                          Here dependency-pairs are as follows:
                          
                          WeakDPs DPs:
                            {  1: plus^#(N, s(M)) -> U11^#(tt(), M, N)
                             , 2: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                             , 3: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                        
                        The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                        
                          {  1: plus^#(N, s(M)) -> U11^#(tt(), M, N)
                           , 2: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M))
                           , 3: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))}
                        
                        We consider the following Problem:
                        
                          Weak Trs: {activate(X) -> X}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Weak Trs: {activate(X) -> X}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded
                    
                    * Path 1:{2}: YES(O(1),O(1))
                      --------------------------
                      
                      We consider the following Problem:
                      
                        Weak Trs: {activate(X) -> X}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Weak Trs: {activate(X) -> X}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Weak Trs: {activate(X) -> X}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))