We consider the following Problem: Strict Trs: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, 0()) -> N , plus(N, s(M)) -> U11(tt(), M, N) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, 0()) -> N , plus(N, s(M)) -> U11(tt(), M, N) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {plus(N, 0()) -> N} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 1] [1 0] [0 0] [1] tt() = [0] [0] U12(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [1 0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [1] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] 0() = [2] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, s(M)) -> U11(tt(), M, N) , activate(X) -> X} Weak Trs: {plus(N, 0()) -> N} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {plus(N, s(M)) -> U11(tt(), M, N)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 1] [0 0] [0 0] [1] tt() = [0] [0] U12(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [1 0] [1 0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [3] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , activate(X) -> X} Weak Trs: { plus(N, s(M)) -> U11(tt(), M, N) , plus(N, 0()) -> N} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {U12(tt(), M, N) -> s(plus(activate(N), activate(M)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [1 1] [0] tt() = [3] [1] U12(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [3] [1 1] [1 0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [1] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [1 1] [0 0] [0] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U11(tt(), M, N) -> U12(tt(), activate(M), activate(N)) , activate(X) -> X} Weak Trs: { U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, s(M)) -> U11(tt(), M, N) , plus(N, 0()) -> N} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(U12) = {2, 3}, Uargs(activate) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 1] [1] tt() = [1] [3] U12(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [3] [1 1] [1 0] [0 1] [1] activate(x1) = [1 0] x1 + [2] [0 1] [0] s(x1) = [1 0] x1 + [0] [0 1] [3] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))} Weak Trs: { activate(X) -> X , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, s(M)) -> U11(tt(), M, N) , plus(N, 0()) -> N} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))} Weak Trs: { activate(X) -> X , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, s(M)) -> U11(tt(), M, N) , plus(N, 0()) -> N} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} Weak DPs: { activate^#(X) -> c_2() , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , plus^#(N, s(M)) -> U11^#(tt(), M, N) , plus^#(N, 0()) -> c_5()} We consider the following Problem: Strict DPs: {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} Strict Trs: {U11(tt(), M, N) -> U12(tt(), activate(M), activate(N))} Weak DPs: { activate^#(X) -> c_2() , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , plus^#(N, s(M)) -> U11^#(tt(), M, N) , plus^#(N, 0()) -> c_5()} Weak Trs: { activate(X) -> X , U12(tt(), M, N) -> s(plus(activate(N), activate(M))) , plus(N, s(M)) -> U11(tt(), M, N) , plus(N, 0()) -> N} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Weak Usable Rules: {activate(X) -> X} We consider the following Problem: Strict DPs: {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} Weak DPs: { activate^#(X) -> c_2() , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , plus^#(N, s(M)) -> U11^#(tt(), M, N) , plus^#(N, 0()) -> c_5()} Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} Weak DPs: { activate^#(X) -> c_2() , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , plus^#(N, s(M)) -> U11^#(tt(), M, N) , plus^#(N, 0()) -> c_5()} Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->2:{1,4,3} [ YES(O(1),O(1)) ] | `->3:{5} [ YES(O(1),O(1)) ] ->1:{2} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} WeakDPs DPs: { 2: activate^#(X) -> c_2() , 3: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , 4: plus^#(N, s(M)) -> U11^#(tt(), M, N) , 5: plus^#(N, 0()) -> c_5()} * Path 2:{1,4,3}: YES(O(1),O(1)) ------------------------------ We consider the following Problem: Strict DPs: {U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N)) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} We consider the following Problem: Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{1,4,3}->3:{5}: YES(O(1),O(1)) ------------------------------------- We consider the following Problem: Weak DPs: { plus^#(N, s(M)) -> U11^#(tt(), M, N) , U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: plus^#(N, s(M)) -> U11^#(tt(), M, N) -->_1 U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N)) :3 2: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) -->_1 plus^#(N, s(M)) -> U11^#(tt(), M, N) :1 3: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N)) -->_1 U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) :2 together with the congruence-graph ->1:{1,2,3} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: plus^#(N, s(M)) -> U11^#(tt(), M, N) , 2: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , 3: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: plus^#(N, s(M)) -> U11^#(tt(), M, N) , 2: U12^#(tt(), M, N) -> plus^#(activate(N), activate(M)) , 3: U11^#(tt(), M, N) -> U12^#(tt(), activate(M), activate(N))} We consider the following Problem: Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{2}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: {activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))