We consider the following Problem: Strict Trs: { U11(tt(), N) -> activate(N) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , isNat(n__s(V1)) -> isNat(activate(V1)) , plus(N, 0()) -> U11(isNat(N), N) , plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , isNat(X) -> n__isNat(X) , s(X) -> n__s(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__isNat(X)) -> isNat(X) , activate(n__s(X)) -> s(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) , plus(N, 0()) -> U11(isNat(N), N)} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { U11(tt(), N) -> activate(N) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , isNat(X) -> n__isNat(X) , s(X) -> n__s(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__isNat(X)) -> isNat(X) , activate(n__s(X)) -> s(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [1 0] [0 0] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [1] U21(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [1] s(x1) = [1 0] x1 + [1] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] isNat(x1) = [1 0] x1 + [1] [1 0] [1] n__0() = [0] [0] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] n__isNat(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__isNat(X)) -> isNat(X) , activate(n__s(X)) -> s(X) , activate(X) -> X} Weak Trs: { U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {0() -> n__0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [1 0] [0 0] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [1] U21(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [1] s(x1) = [1 0] x1 + [1] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] isNat(x1) = [1 0] x1 + [1] [1 0] [1] n__0() = [0] [0] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] n__isNat(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [2] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , isNat(n__s(V1)) -> isNat(activate(V1)) , plus(X1, X2) -> n__plus(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__isNat(X)) -> isNat(X) , activate(n__s(X)) -> s(X) , activate(X) -> X} Weak Trs: { 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isNat(n__s(V1)) -> isNat(activate(V1))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 1] [1] tt() = [3] [2] activate(x1) = [1 0] x1 + [0] [0 0] [1] U21(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [1 1] [0 1] [0 0] [0] s(x1) = [1 0] x1 + [2] [0 0] [0] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [1 0] [1] isNat(x1) = [1 0] x1 + [3] [1 0] [3] n__0() = [0] [0] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] n__isNat(x1) = [1 0] x1 + [1] [0 0] [0] n__s(x1) = [1 0] x1 + [1] [0 0] [0] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , plus(X1, X2) -> n__plus(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__isNat(X)) -> isNat(X) , activate(n__s(X)) -> s(X) , activate(X) -> X} Weak Trs: { isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {U21(tt(), M, N) -> s(plus(activate(N), activate(M)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [1 0] [0 0] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [1] U21(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] isNat(x1) = [1 0] x1 + [1] [1 0] [1] n__0() = [0] [0] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] n__isNat(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , plus(X1, X2) -> n__plus(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__isNat(X)) -> isNat(X) , activate(n__s(X)) -> s(X) , activate(X) -> X} Weak Trs: { U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [0 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [3] tt() = [0] [1] activate(x1) = [1 1] x1 + [1] [0 0] [3] U21(x1, x2, x3) = [0 1] x1 + [1 1] x2 + [1 1] x3 + [3] [0 0] [0 0] [0 0] [3] s(x1) = [1 0] x1 + [2] [0 1] [3] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 1] x1 + [1 1] x2 + [3] [0 0] [0 0] [3] isNat(x1) = [1 1] x1 + [1] [0 0] [1] n__0() = [0] [0] n__plus(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [1 1] [0 1] [0] n__isNat(x1) = [1 1] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [2] [0 1] [3] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , plus(X1, X2) -> n__plus(X1, X2) , activate(n__isNat(X)) -> isNat(X) , activate(n__s(X)) -> s(X) , activate(X) -> X} Weak Trs: { activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__isNat(X)) -> isNat(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [0 0] x1 + [1 1] x2 + [3] [0 0] [0 0] [1] tt() = [3] [1] activate(x1) = [1 1] x1 + [3] [0 0] [1] U21(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [3] [0 0] [0 0] [0 0] [3] s(x1) = [1 0] x1 + [1] [0 1] [3] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 1] x1 + [1 1] x2 + [2] [0 0] [0 0] [1] isNat(x1) = [1 1] x1 + [1] [0 0] [1] n__0() = [2] [0] n__plus(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [1 1] [0 1] [0] n__isNat(x1) = [1 1] x1 + [0] [0 0] [1] n__s(x1) = [1 0] x1 + [1] [0 1] [3] 0() = [2] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , plus(X1, X2) -> n__plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(X) -> X} Weak Trs: { activate(n__isNat(X)) -> isNat(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [0 0] x1 + [1 1] x2 + [1] [1 1] [0 0] [1] tt() = [0] [0] activate(x1) = [1 1] x1 + [0] [0 0] [0] U21(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 1] [0 0] [0 0] [1] s(x1) = [1 0] x1 + [1] [0 1] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 0] [0 0] [0] isNat(x1) = [1 1] x1 + [0] [0 0] [0] n__0() = [0] [0] n__plus(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [1 1] [0 1] [2] n__isNat(x1) = [1 1] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 1] [0] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { plus(X1, X2) -> n__plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(X) -> X} Weak Trs: { isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , activate(n__isNat(X)) -> isNat(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__s(X)) -> s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [1] U21(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 0] [1] s(x1) = [1 0] x1 + [1] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] isNat(x1) = [1 0] x1 + [0] [0 0] [1] n__0() = [0] [0] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [0] n__isNat(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [1] [0 0] [0] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { plus(X1, X2) -> n__plus(X1, X2) , activate(X) -> X} Weak Trs: { activate(n__s(X)) -> s(X) , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , activate(n__isNat(X)) -> isNat(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [1] [0 1] [0] U21(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 0] [3] s(x1) = [1 0] x1 + [1] [0 1] [2] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [0] isNat(x1) = [1 2] x1 + [0] [0 0] [1] n__0() = [0] [0] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 1] [0 1] [0] n__isNat(x1) = [1 2] x1 + [0] [0 0] [1] n__s(x1) = [1 0] x1 + [0] [0 1] [2] 0() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {plus(X1, X2) -> n__plus(X1, X2)} Weak Trs: { activate(X) -> X , activate(n__s(X)) -> s(X) , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , activate(n__isNat(X)) -> isNat(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {plus(X1, X2) -> n__plus(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {}, Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2}, Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1}, Uargs(n__s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] tt() = [3] [0] activate(x1) = [1 0] x1 + [1] [0 1] [1] U21(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 0] [1] s(x1) = [1 0] x1 + [1] [0 0] [1] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] isNat(x1) = [1 0] x1 + [0] [0 0] [1] n__0() = [3] [0] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [0] n__isNat(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [1] [0 0] [0] 0() = [3] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { plus(X1, X2) -> n__plus(X1, X2) , activate(X) -> X , activate(n__s(X)) -> s(X) , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , activate(n__isNat(X)) -> isNat(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { plus(X1, X2) -> n__plus(X1, X2) , activate(X) -> X , activate(n__s(X)) -> s(X) , isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) , activate(n__isNat(X)) -> isNat(X) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , U21(tt(), M, N) -> s(plus(activate(N), activate(M))) , isNat(n__s(V1)) -> isNat(activate(V1)) , 0() -> n__0() , U11(tt(), N) -> activate(N) , and(tt(), X) -> activate(X) , isNat(n__0()) -> tt() , isNat(X) -> n__isNat(X) , s(X) -> n__s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))