(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ACTIVATE(z0))
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
PLUS(z0, 0) → c9(U31'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c10(U41'(isNat(z1), z1, z0), ISNAT(z1))
ACTIVATE(n__0) → c14(0')
ACTIVATE(n__plus(z0, z1)) → c15(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(S(activate(z0)), ACTIVATE(z0))
S tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ACTIVATE(z0))
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
PLUS(z0, 0) → c9(U31'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c10(U41'(isNat(z1), z1, z0), ISNAT(z1))
ACTIVATE(n__0) → c14(0')
ACTIVATE(n__plus(z0, z1)) → c15(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(S(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U11', U31', U41', U42', ISNAT, PLUS, ACTIVATE
Compound Symbols:
c, c3, c4, c5, c7, c8, c9, c10, c14, c15, c16
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
PLUS(z0, 0) → c9(U31'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c10(U41'(isNat(z1), z1, z0), ISNAT(z1))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ACTIVATE(z0))
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__0) → c14(0')
ACTIVATE(n__plus(z0, z1)) → c15(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(S(activate(z0)), ACTIVATE(z0))
S tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ACTIVATE(z0))
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__0) → c14(0')
ACTIVATE(n__plus(z0, z1)) → c15(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(S(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U11', U31', U41', U42', ISNAT, ACTIVATE
Compound Symbols:
c, c3, c4, c5, c7, c8, c14, c15, c16
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
U31'(tt, z0) → c3(ACTIVATE(z0))
Removed 1 trailing nodes:
ACTIVATE(n__0) → c14(0')
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(S(activate(z0)), ACTIVATE(z0))
S tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(S(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U11', U41', U42', ISNAT, ACTIVATE
Compound Symbols:
c, c4, c5, c7, c8, c15, c16
(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
S tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U41', ISNAT, U11', U42', ACTIVATE
Compound Symbols:
c4, c7, c, c5, c8, c15, c16
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
K tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U41', ISNAT, U11', U42', ACTIVATE
Compound Symbols:
c4, c7, c, c5, c8, c15, c16
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
We considered the (Usable) Rules:
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
s(z0) → n__s(z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
U21(tt) → tt
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
And the Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVATE(x1)) = 0
POL(ISNAT(x1)) = x1
POL(U11(x1, x2)) = x1
POL(U11'(x1, x2)) = x1 + x2
POL(U12(x1)) = [1]
POL(U21(x1)) = x1
POL(U41'(x1, x2, x3)) = [3]x1 + [5]x2 + [2]x3
POL(U42'(x1, x2, x3)) = [4]x2
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1)) = x1
POL(c4(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1, x2)) = x1 + x2
POL(isNat(x1)) = [1]
POL(n__0) = 0
POL(n__plus(x1, x2)) = [1] + x1 + x2
POL(n__s(x1)) = x1
POL(plus(x1, x2)) = [1] + x1 + x2
POL(s(x1)) = x1
POL(tt) = [1]
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
K tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U41', ISNAT, U11', U42', ACTIVATE
Compound Symbols:
c4, c7, c, c5, c8, c15, c16
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
s(z0) → n__s(z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
U21(tt) → tt
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
And the Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(ACTIVATE(x1)) = 0
POL(ISNAT(x1)) = [2]x1
POL(U11(x1, x2)) = [3] + [5]x1 + [2]x2
POL(U11'(x1, x2)) = [2]x2
POL(U12(x1)) = [3] + x1
POL(U21(x1)) = [2] + [2]x1
POL(U41'(x1, x2, x3)) = [4] + [5]x1 + [4]x2 + [5]x3
POL(U42'(x1, x2, x3)) = [1] + [4]x2
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1)) = x1
POL(c4(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(n__0) = [1]
POL(n__plus(x1, x2)) = [4] + x1 + x2
POL(n__s(x1)) = x1
POL(plus(x1, x2)) = [4] + x1 + x2
POL(s(x1)) = x1
POL(tt) = [4]
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
S tuples:
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
K tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U41', ISNAT, U11', U42', ACTIVATE
Compound Symbols:
c4, c7, c, c5, c8, c15, c16
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
We considered the (Usable) Rules:
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
s(z0) → n__s(z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
U21(tt) → tt
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
And the Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(ACTIVATE(x1)) = 0
POL(ISNAT(x1)) = [2] + [4]x1
POL(U11(x1, x2)) = [3] + [2]x1 + [5]x2
POL(U11'(x1, x2)) = [4] + [4]x2
POL(U12(x1)) = [5] + [3]x1
POL(U21(x1)) = [2]
POL(U41'(x1, x2, x3)) = [2]x1 + [4]x2 + [4]x3
POL(U42'(x1, x2, x3)) = [3]x2
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1)) = x1
POL(c4(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1, x2)) = x1 + x2
POL(isNat(x1)) = [3] + [3]x1
POL(n__0) = [2]
POL(n__plus(x1, x2)) = [4] + x1 + x2
POL(n__s(x1)) = [4] + x1
POL(plus(x1, x2)) = [4] + x1 + x2
POL(s(x1)) = [4] + x1
POL(tt) = [4]
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
S tuples:
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
K tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U41', ISNAT, U11', U42', ACTIVATE
Compound Symbols:
c4, c7, c, c5, c8, c15, c16
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
We considered the (Usable) Rules:
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
s(z0) → n__s(z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
U21(tt) → tt
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
And the Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(ACTIVATE(x1)) = [2]x1
POL(ISNAT(x1)) = x12
POL(U11(x1, x2)) = x1 + [2]x2
POL(U11'(x1, x2)) = x1 + [2]x2 + x22
POL(U12(x1)) = [2] + x1
POL(U21(x1)) = [2]
POL(U41'(x1, x2, x3)) = [3]x1 + [3]x2 + [2]x3 + [3]x32 + [3]x1·x3 + [3]x12 + [2]x1·x2
POL(U42'(x1, x2, x3)) = [1] + [2]x2 + [2]x3 + x1·x3
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1)) = x1
POL(c4(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1, x2)) = x1 + x2
POL(isNat(x1)) = [2]x1
POL(n__0) = [1]
POL(n__plus(x1, x2)) = [3] + x1 + x2
POL(n__s(x1)) = [1] + x1
POL(plus(x1, x2)) = [3] + x1 + x2
POL(s(x1)) = [1] + x1
POL(tt) = [2]
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → activate(z0)
U41(tt, z0, z1) → U42(isNat(activate(z1)), activate(z0), activate(z1))
U42(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
plus(z0, 0) → U31(isNat(z0), z0)
plus(z0, s(z1)) → U41(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(z0) → z0
Tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
S tuples:none
K tuples:
U41'(tt, z0, z1) → c4(U42'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U42'(tt, z0, z1) → c5(ACTIVATE(z1), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c7(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c8(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c15(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c16(ACTIVATE(z0))
Defined Rule Symbols:
U11, U12, U21, U31, U41, U42, isNat, plus, 0, s, activate
Defined Pair Symbols:
U41', ISNAT, U11', U42', ACTIVATE
Compound Symbols:
c4, c7, c, c5, c8, c15, c16
(19) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(20) BOUNDS(O(1), O(1))