We consider the following Problem:

  Strict Trs:
    {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
     , active(__(X, nil())) -> mark(X)
     , active(__(nil(), X)) -> mark(X)
     , active(U11(tt())) -> mark(U12(tt()))
     , active(U12(tt())) -> mark(tt())
     , active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
     , mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
     , mark(nil()) -> active(nil())
     , mark(U11(X)) -> active(U11(mark(X)))
     , mark(tt()) -> active(tt())
     , mark(U12(X)) -> active(U12(mark(X)))
     , mark(isNePal(X)) -> active(isNePal(mark(X)))
     , __(mark(X1), X2) -> __(X1, X2)
     , __(X1, mark(X2)) -> __(X1, X2)
     , __(active(X1), X2) -> __(X1, X2)
     , __(X1, active(X2)) -> __(X1, X2)
     , U11(mark(X)) -> U11(X)
     , U11(active(X)) -> U11(X)
     , U12(mark(X)) -> U12(X)
     , U12(active(X)) -> U12(X)
     , isNePal(mark(X)) -> isNePal(X)
     , isNePal(active(X)) -> isNePal(X)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(U11(tt())) -> mark(U12(tt()))
       , active(U12(tt())) -> mark(tt())
       , active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
       , mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
       , mark(nil()) -> active(nil())
       , mark(U11(X)) -> active(U11(mark(X)))
       , mark(tt()) -> active(tt())
       , mark(U12(X)) -> active(U12(mark(X)))
       , mark(isNePal(X)) -> active(isNePal(mark(X)))
       , __(mark(X1), X2) -> __(X1, X2)
       , __(X1, mark(X2)) -> __(X1, X2)
       , __(active(X1), X2) -> __(X1, X2)
       , __(X1, active(X2)) -> __(X1, X2)
       , U11(mark(X)) -> U11(X)
       , U11(active(X)) -> U11(X)
       , U12(mark(X)) -> U12(X)
       , U12(active(X)) -> U12(X)
       , isNePal(mark(X)) -> isNePal(X)
       , isNePal(active(X)) -> isNePal(X)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  __(mark(X1), X2) -> __(X1, X2)
       , __(X1, mark(X2)) -> __(X1, X2)
       , __(active(X1), X2) -> __(X1, X2)
       , __(X1, active(X2)) -> __(X1, X2)
       , U11(mark(X)) -> U11(X)
       , U11(active(X)) -> U11(X)
       , U12(mark(X)) -> U12(X)
       , U12(active(X)) -> U12(X)
       , isNePal(mark(X)) -> isNePal(X)
       , isNePal(active(X)) -> isNePal(X)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       active(x1) = [1 0] x1 + [1]
                    [0 0]      [1]
       __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [1]
       mark(x1) = [1 0] x1 + [1]
                  [0 0]      [1]
       nil() = [0]
               [0]
       U11(x1) = [1 0] x1 + [0]
                 [0 0]      [1]
       tt() = [0]
              [0]
       U12(x1) = [1 0] x1 + [0]
                 [0 0]      [1]
       isNePal(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
         , active(__(X, nil())) -> mark(X)
         , active(__(nil(), X)) -> mark(X)
         , active(U11(tt())) -> mark(U12(tt()))
         , active(U12(tt())) -> mark(tt())
         , active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
         , mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
         , mark(nil()) -> active(nil())
         , mark(U11(X)) -> active(U11(mark(X)))
         , mark(tt()) -> active(tt())
         , mark(U12(X)) -> active(U12(mark(X)))
         , mark(isNePal(X)) -> active(isNePal(mark(X)))}
      Weak Trs:
        {  __(mark(X1), X2) -> __(X1, X2)
         , __(X1, mark(X2)) -> __(X1, X2)
         , __(active(X1), X2) -> __(X1, X2)
         , __(X1, active(X2)) -> __(X1, X2)
         , U11(mark(X)) -> U11(X)
         , U11(active(X)) -> U11(X)
         , U12(mark(X)) -> U12(X)
         , U12(active(X)) -> U12(X)
         , isNePal(mark(X)) -> isNePal(X)
         , isNePal(active(X)) -> isNePal(X)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         active(x1) = [1 1] x1 + [1]
                      [0 0]      [1]
         __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                      [0 0]      [0 0]      [0]
         mark(x1) = [1 0] x1 + [1]
                    [0 0]      [1]
         nil() = [0]
                 [0]
         U11(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
         tt() = [0]
                [0]
         U12(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
         isNePal(x1) = [1 0] x1 + [0]
                       [0 0]      [3]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
           , active(__(X, nil())) -> mark(X)
           , active(__(nil(), X)) -> mark(X)
           , active(U11(tt())) -> mark(U12(tt()))
           , active(U12(tt())) -> mark(tt())
           , mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
           , mark(nil()) -> active(nil())
           , mark(U11(X)) -> active(U11(mark(X)))
           , mark(tt()) -> active(tt())
           , mark(U12(X)) -> active(U12(mark(X)))
           , mark(isNePal(X)) -> active(isNePal(mark(X)))}
        Weak Trs:
          {  active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
           , __(mark(X1), X2) -> __(X1, X2)
           , __(X1, mark(X2)) -> __(X1, X2)
           , __(active(X1), X2) -> __(X1, X2)
           , __(X1, active(X2)) -> __(X1, X2)
           , U11(mark(X)) -> U11(X)
           , U11(active(X)) -> U11(X)
           , U12(mark(X)) -> U12(X)
           , U12(active(X)) -> U12(X)
           , isNePal(mark(X)) -> isNePal(X)
           , isNePal(active(X)) -> isNePal(X)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component:
          {  active(U11(tt())) -> mark(U12(tt()))
           , active(U12(tt())) -> mark(tt())}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           active(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
           __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
           mark(x1) = [1 0] x1 + [1]
                      [0 0]      [0]
           nil() = [0]
                   [0]
           U11(x1) = [1 0] x1 + [3]
                     [0 0]      [2]
           tt() = [0]
                  [0]
           U12(x1) = [1 0] x1 + [1]
                     [0 0]      [2]
           isNePal(x1) = [1 0] x1 + [0]
                         [0 0]      [3]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
             , mark(nil()) -> active(nil())
             , mark(U11(X)) -> active(U11(mark(X)))
             , mark(tt()) -> active(tt())
             , mark(U12(X)) -> active(U12(mark(X)))
             , mark(isNePal(X)) -> active(isNePal(mark(X)))}
          Weak Trs:
            {  active(U11(tt())) -> mark(U12(tt()))
             , active(U12(tt())) -> mark(tt())
             , active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
             , __(mark(X1), X2) -> __(X1, X2)
             , __(X1, mark(X2)) -> __(X1, X2)
             , __(active(X1), X2) -> __(X1, X2)
             , __(X1, active(X2)) -> __(X1, X2)
             , U11(mark(X)) -> U11(X)
             , U11(active(X)) -> U11(X)
             , U12(mark(X)) -> U12(X)
             , U12(active(X)) -> U12(X)
             , isNePal(mark(X)) -> isNePal(X)
             , isNePal(active(X)) -> isNePal(X)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component:
            {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             active(x1) = [1 0] x1 + [1]
                          [0 0]      [1]
             __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [1]
             mark(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
             nil() = [0]
                     [0]
             U11(x1) = [1 0] x1 + [0]
                       [1 0]      [3]
             tt() = [0]
                    [0]
             U12(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
             isNePal(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
               , mark(nil()) -> active(nil())
               , mark(U11(X)) -> active(U11(mark(X)))
               , mark(tt()) -> active(tt())
               , mark(U12(X)) -> active(U12(mark(X)))
               , mark(isNePal(X)) -> active(isNePal(mark(X)))}
            Weak Trs:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(U11(tt())) -> mark(U12(tt()))
               , active(U12(tt())) -> mark(tt())
               , active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
               , __(mark(X1), X2) -> __(X1, X2)
               , __(X1, mark(X2)) -> __(X1, X2)
               , __(active(X1), X2) -> __(X1, X2)
               , __(X1, active(X2)) -> __(X1, X2)
               , U11(mark(X)) -> U11(X)
               , U11(active(X)) -> U11(X)
               , U12(mark(X)) -> U12(X)
               , U12(active(X)) -> U12(X)
               , isNePal(mark(X)) -> isNePal(X)
               , isNePal(active(X)) -> isNePal(X)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component:
              {  mark(nil()) -> active(nil())
               , mark(tt()) -> active(tt())}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               active(x1) = [1 1] x1 + [0]
                            [0 0]      [0]
               __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [3]
               mark(x1) = [1 0] x1 + [1]
                          [0 0]      [0]
               nil() = [0]
                       [0]
               U11(x1) = [1 0] x1 + [0]
                         [0 0]      [2]
               tt() = [0]
                      [0]
               U12(x1) = [1 0] x1 + [1]
                         [0 0]      [0]
               isNePal(x1) = [1 0] x1 + [2]
                             [0 0]      [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
                 , mark(U11(X)) -> active(U11(mark(X)))
                 , mark(U12(X)) -> active(U12(mark(X)))
                 , mark(isNePal(X)) -> active(isNePal(mark(X)))}
              Weak Trs:
                {  mark(nil()) -> active(nil())
                 , mark(tt()) -> active(tt())
                 , active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(U11(tt())) -> mark(U12(tt()))
                 , active(U12(tt())) -> mark(tt())
                 , active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
                 , __(mark(X1), X2) -> __(X1, X2)
                 , __(X1, mark(X2)) -> __(X1, X2)
                 , __(active(X1), X2) -> __(X1, X2)
                 , __(X1, active(X2)) -> __(X1, X2)
                 , U11(mark(X)) -> U11(X)
                 , U11(active(X)) -> U11(X)
                 , U12(mark(X)) -> U12(X)
                 , U12(active(X)) -> U12(X)
                 , isNePal(mark(X)) -> isNePal(X)
                 , isNePal(active(X)) -> isNePal(X)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              We consider the following Problem:
              
                Strict Trs:
                  {  mark(__(X1, X2)) -> active(__(mark(X1), mark(X2)))
                   , mark(U11(X)) -> active(U11(mark(X)))
                   , mark(U12(X)) -> active(U12(mark(X)))
                   , mark(isNePal(X)) -> active(isNePal(mark(X)))}
                Weak Trs:
                  {  mark(nil()) -> active(nil())
                   , mark(tt()) -> active(tt())
                   , active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(U11(tt())) -> mark(U12(tt()))
                   , active(U12(tt())) -> mark(tt())
                   , active(isNePal(__(I, __(P, I)))) -> mark(U11(tt()))
                   , __(mark(X1), X2) -> __(X1, X2)
                   , __(X1, mark(X2)) -> __(X1, X2)
                   , __(active(X1), X2) -> __(X1, X2)
                   , __(X1, active(X2)) -> __(X1, X2)
                   , U11(mark(X)) -> U11(X)
                   , U11(active(X)) -> U11(X)
                   , U12(mark(X)) -> U12(X)
                   , U12(active(X)) -> U12(X)
                   , isNePal(mark(X)) -> isNePal(X)
                   , isNePal(active(X)) -> isNePal(X)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The problem is match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 1
                 , ___0(2, 2) -> 1
                 , mark_0(2) -> 1
                 , nil_0() -> 2
                 , U11_0(2) -> 1
                 , tt_0() -> 2
                 , U12_0(2) -> 1
                 , isNePal_0(2) -> 1}

Hurray, we answered YES(?,O(n^1))