Problem:
active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
active(__(X,nil())) -> mark(X)
active(__(nil(),X)) -> mark(X)
active(and(tt(),X)) -> mark(X)
active(isNePal(__(I,__(P,I)))) -> mark(tt())
mark(__(X1,X2)) -> active(__(mark(X1),mark(X2)))
mark(nil()) -> active(nil())
mark(and(X1,X2)) -> active(and(mark(X1),X2))
mark(tt()) -> active(tt())
mark(isNePal(X)) -> active(isNePal(mark(X)))
__(mark(X1),X2) -> __(X1,X2)
__(X1,mark(X2)) -> __(X1,X2)
__(active(X1),X2) -> __(X1,X2)
__(X1,active(X2)) -> __(X1,X2)
and(mark(X1),X2) -> and(X1,X2)
and(X1,mark(X2)) -> and(X1,X2)
and(active(X1),X2) -> and(X1,X2)
and(X1,active(X2)) -> and(X1,X2)
isNePal(mark(X)) -> isNePal(X)
isNePal(active(X)) -> isNePal(X)
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {13,7,6,5,4,3}
transitions:
nil1() -> 12*,1,8
active0(12) -> 3*
active0(2) -> 3*
active0(11) -> 3*
active0(1) -> 3*
__0(2,12) -> 5*
__0(11,2) -> 5*
__0(1,2) -> 5*
__0(11,12) -> 5*
__0(1,12) -> 5*
__0(12,1) -> 5*
__0(2,1) -> 5*
__0(12,11) -> 5*
__0(2,11) -> 5*
__0(11,1) -> 5*
__0(1,1) -> 5*
__0(11,11) -> 5*
__0(1,11) -> 5*
__0(12,2) -> 5*
__0(2,2) -> 5*
__0(12,12) -> 5*
mark0(12) -> 4*
mark0(2) -> 4*
mark0(11) -> 4*
mark0(1) -> 4*
and0(2,12) -> 6*
and0(11,2) -> 6*
and0(1,2) -> 6*
and0(11,12) -> 6*
and0(1,12) -> 6*
and0(12,1) -> 6*
and0(2,1) -> 6*
and0(12,11) -> 6*
and0(2,11) -> 6*
and0(11,1) -> 6*
and0(1,1) -> 6*
and0(11,11) -> 6*
and0(1,11) -> 6*
and0(12,2) -> 6*
and0(2,2) -> 6*
and0(12,12) -> 6*
isNePal0(12) -> 7*
isNePal0(2) -> 7*
isNePal0(11) -> 7*
isNePal0(1) -> 7*
active1(12) -> 13*,3,4
active1(11) -> 13*,3,4
active1(8) -> 4*
tt1() -> 11*,2,8
problem:
Qed