Problem: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) active(__(X,nil())) -> mark(X) active(__(nil(),X)) -> mark(X) active(and(tt(),X)) -> mark(X) active(isNePal(__(I,__(P,I)))) -> mark(tt()) mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(and(X1,X2)) -> active(and(mark(X1),X2)) mark(tt()) -> active(tt()) mark(isNePal(X)) -> active(isNePal(mark(X))) __(mark(X1),X2) -> __(X1,X2) __(X1,mark(X2)) -> __(X1,X2) __(active(X1),X2) -> __(X1,X2) __(X1,active(X2)) -> __(X1,X2) and(mark(X1),X2) -> and(X1,X2) and(X1,mark(X2)) -> and(X1,X2) and(active(X1),X2) -> and(X1,X2) and(X1,active(X2)) -> and(X1,X2) isNePal(mark(X)) -> isNePal(X) isNePal(active(X)) -> isNePal(X) Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {13,7,6,5,4,3} transitions: nil1() -> 12*,1,8 active0(12) -> 3* active0(2) -> 3* active0(11) -> 3* active0(1) -> 3* __0(2,12) -> 5* __0(11,2) -> 5* __0(1,2) -> 5* __0(11,12) -> 5* __0(1,12) -> 5* __0(12,1) -> 5* __0(2,1) -> 5* __0(12,11) -> 5* __0(2,11) -> 5* __0(11,1) -> 5* __0(1,1) -> 5* __0(11,11) -> 5* __0(1,11) -> 5* __0(12,2) -> 5* __0(2,2) -> 5* __0(12,12) -> 5* mark0(12) -> 4* mark0(2) -> 4* mark0(11) -> 4* mark0(1) -> 4* and0(2,12) -> 6* and0(11,2) -> 6* and0(1,2) -> 6* and0(11,12) -> 6* and0(1,12) -> 6* and0(12,1) -> 6* and0(2,1) -> 6* and0(12,11) -> 6* and0(2,11) -> 6* and0(11,1) -> 6* and0(1,1) -> 6* and0(11,11) -> 6* and0(1,11) -> 6* and0(12,2) -> 6* and0(2,2) -> 6* and0(12,12) -> 6* isNePal0(12) -> 7* isNePal0(2) -> 7* isNePal0(11) -> 7* isNePal0(1) -> 7* active1(12) -> 13*,3,4 active1(11) -> 13*,3,4 active1(8) -> 4* tt1() -> 11*,2,8 problem: Qed