Problem:
 active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
 active(__(X,nil())) -> mark(X)
 active(__(nil(),X)) -> mark(X)
 active(and(tt(),X)) -> mark(X)
 active(isNePal(__(I,__(P,I)))) -> mark(tt())
 mark(__(X1,X2)) -> active(__(mark(X1),mark(X2)))
 mark(nil()) -> active(nil())
 mark(and(X1,X2)) -> active(and(mark(X1),X2))
 mark(tt()) -> active(tt())
 mark(isNePal(X)) -> active(isNePal(mark(X)))
 __(mark(X1),X2) -> __(X1,X2)
 __(X1,mark(X2)) -> __(X1,X2)
 __(active(X1),X2) -> __(X1,X2)
 __(X1,active(X2)) -> __(X1,X2)
 and(mark(X1),X2) -> and(X1,X2)
 and(X1,mark(X2)) -> and(X1,X2)
 and(active(X1),X2) -> and(X1,X2)
 and(X1,active(X2)) -> and(X1,X2)
 isNePal(mark(X)) -> isNePal(X)
 isNePal(active(X)) -> isNePal(X)

Proof:
 Bounds Processor:
  bound: 1
  enrichment: match
  automaton:
   final states: {13,7,6,5,4,3}
   transitions:
    nil1() -> 12*,1,8
    active0(12) -> 3*
    active0(2) -> 3*
    active0(11) -> 3*
    active0(1) -> 3*
    __0(2,12) -> 5*
    __0(11,2) -> 5*
    __0(1,2) -> 5*
    __0(11,12) -> 5*
    __0(1,12) -> 5*
    __0(12,1) -> 5*
    __0(2,1) -> 5*
    __0(12,11) -> 5*
    __0(2,11) -> 5*
    __0(11,1) -> 5*
    __0(1,1) -> 5*
    __0(11,11) -> 5*
    __0(1,11) -> 5*
    __0(12,2) -> 5*
    __0(2,2) -> 5*
    __0(12,12) -> 5*
    mark0(12) -> 4*
    mark0(2) -> 4*
    mark0(11) -> 4*
    mark0(1) -> 4*
    and0(2,12) -> 6*
    and0(11,2) -> 6*
    and0(1,2) -> 6*
    and0(11,12) -> 6*
    and0(1,12) -> 6*
    and0(12,1) -> 6*
    and0(2,1) -> 6*
    and0(12,11) -> 6*
    and0(2,11) -> 6*
    and0(11,1) -> 6*
    and0(1,1) -> 6*
    and0(11,11) -> 6*
    and0(1,11) -> 6*
    and0(12,2) -> 6*
    and0(2,2) -> 6*
    and0(12,12) -> 6*
    isNePal0(12) -> 7*
    isNePal0(2) -> 7*
    isNePal0(11) -> 7*
    isNePal0(1) -> 7*
    active1(12) -> 13*,3,4
    active1(11) -> 13*,3,4
    active1(8) -> 4*
    tt1() -> 11*,2,8
  problem:
   
  Qed