We consider the following Problem: Strict Trs: { __(__(X, Y), Z) -> __(X, __(Y, Z)) , __(X, nil()) -> X , __(nil(), X) -> X , and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { __(__(X, Y), Z) -> __(X, __(Y, Z)) , __(X, nil()) -> X , __(nil(), X) -> X , and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {2}, Uargs(and) = {}, Uargs(activate) = {}, Uargs(isNePal) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] nil() = [0] [0] and(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [0] isNePal(x1) = [0 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { __(__(X, Y), Z) -> __(X, __(Y, Z)) , __(X, nil()) -> X , __(nil(), X) -> X , activate(X) -> X} Weak Trs: { and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {2}, Uargs(and) = {}, Uargs(activate) = {}, Uargs(isNePal) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] nil() = [0] [0] and(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [1] [0 1] [0] isNePal(x1) = [0 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { __(__(X, Y), Z) -> __(X, __(Y, Z)) , __(X, nil()) -> X , __(nil(), X) -> X} Weak Trs: { activate(X) -> X , and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {__(X, nil()) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {2}, Uargs(and) = {}, Uargs(activate) = {}, Uargs(isNePal) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] nil() = [2] [0] and(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [0] [0 1] [0] isNePal(x1) = [0 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { __(__(X, Y), Z) -> __(X, __(Y, Z)) , __(nil(), X) -> X} Weak Trs: { __(X, nil()) -> X , activate(X) -> X , and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {__(nil(), X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {2}, Uargs(and) = {}, Uargs(activate) = {}, Uargs(isNePal) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [1 1] [0 1] [0] nil() = [2] [0] and(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] tt() = [0] [0] activate(x1) = [1 0] x1 + [0] [0 1] [0] isNePal(x1) = [0 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {__(__(X, Y), Z) -> __(X, __(Y, Z))} Weak Trs: { __(nil(), X) -> X , __(X, nil()) -> X , activate(X) -> X , and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {__(__(X, Y), Z) -> __(X, __(Y, Z))} Weak Trs: { __(nil(), X) -> X , __(X, nil()) -> X , activate(X) -> X , and(tt(), X) -> activate(X) , isNePal(__(I, __(P, I))) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 0. The enriched problem is compatible with the following automaton: { ___0(2, 2) -> 1 , nil_0() -> 1 , nil_0() -> 2 , and_0(2, 2) -> 1 , tt_0() -> 1 , tt_0() -> 2 , activate_0(2) -> 1 , isNePal_0(2) -> 1} Hurray, we answered YES(?,O(n^1))