Problem:
 __(__(X,Y),Z) -> __(X,__(Y,Z))
 __(X,nil()) -> X
 __(nil(),X) -> X
 and(tt(),X) -> activate(X)
 isNePal(__(I,__(P,I))) -> tt()
 activate(X) -> X

Proof:
 Bounds Processor:
  bound: 1
  enrichment: match
  automaton:
   final states: {16,15,12,11,10,6,5,4,3}
   transitions:
    activate1(15) -> 4,12*
    activate1(10) -> 4,12*
    activate1(2) -> 12*,6,4
    activate1(16) -> 4,12*
    activate1(11) -> 4,12*
    activate1(1) -> 12*,6,4
    __0(2,16) -> 3*
    __0(15,1) -> 3*
    __0(10,1) -> 3*
    __0(15,11) -> 3*
    __0(10,11) -> 3*
    __0(15,15) -> 3*
    __0(10,15) -> 3*
    __0(16,2) -> 3*
    __0(11,2) -> 3*
    __0(1,2) -> 3*
    __0(16,10) -> 3*
    __0(11,10) -> 3*
    __0(1,10) -> 3*
    __0(16,16) -> 3*
    __0(11,16) -> 3*
    __0(1,16) -> 3*
    __0(2,1) -> 3*
    __0(2,11) -> 3*
    __0(2,15) -> 3*
    __0(15,2) -> 3*
    __0(10,2) -> 3*
    __0(15,10) -> 3*
    __0(10,10) -> 3*
    __0(15,16) -> 3*
    __0(10,16) -> 3*
    __0(16,1) -> 3*
    __0(11,1) -> 3*
    __0(1,1) -> 3*
    __0(16,11) -> 3*
    __0(11,11) -> 3*
    __0(1,11) -> 3*
    __0(16,15) -> 3*
    __0(11,15) -> 3*
    __0(1,15) -> 3*
    __0(2,2) -> 3*
    __0(2,10) -> 3*
    nil0() -> 10,15*,3,6,1
    and0(2,16) -> 4*
    and0(15,1) -> 4*
    and0(10,1) -> 4*
    and0(15,11) -> 4*
    and0(10,11) -> 4*
    and0(15,15) -> 4*
    and0(10,15) -> 4*
    and0(16,2) -> 4*
    and0(11,2) -> 4*
    and0(1,2) -> 4*
    and0(16,10) -> 4*
    and0(11,10) -> 4*
    and0(1,10) -> 4*
    and0(16,16) -> 4*
    and0(11,16) -> 4*
    and0(1,16) -> 4*
    and0(2,1) -> 4*
    and0(2,11) -> 4*
    and0(2,15) -> 4*
    and0(15,2) -> 4*
    and0(10,2) -> 4*
    and0(15,10) -> 4*
    and0(10,10) -> 4*
    and0(15,16) -> 4*
    and0(10,16) -> 4*
    and0(16,1) -> 4*
    and0(11,1) -> 4*
    and0(1,1) -> 4*
    and0(16,11) -> 4*
    and0(11,11) -> 4*
    and0(1,11) -> 4*
    and0(16,15) -> 4*
    and0(11,15) -> 4*
    and0(1,15) -> 4*
    and0(2,2) -> 4*
    and0(2,10) -> 4*
    tt0() -> 11,16*,3,6,2
    isNePal0(15) -> 5*
    isNePal0(10) -> 5*
    isNePal0(2) -> 5*
    isNePal0(16) -> 5*
    isNePal0(11) -> 5*
    isNePal0(1) -> 5*
    1 -> 12,6,3
    2 -> 12,6,3
    10 -> 12,3
    11 -> 12,3
    15 -> 12,3
    16 -> 12,3
  problem:
   
  Qed