Problem:
 active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
 active(__(X,nil())) -> mark(X)
 active(__(nil(),X)) -> mark(X)
 active(and(tt(),X)) -> mark(X)
 active(isNePal(__(I,__(P,I)))) -> mark(tt())
 active(__(X1,X2)) -> __(active(X1),X2)
 active(__(X1,X2)) -> __(X1,active(X2))
 active(and(X1,X2)) -> and(active(X1),X2)
 active(isNePal(X)) -> isNePal(active(X))
 __(mark(X1),X2) -> mark(__(X1,X2))
 __(X1,mark(X2)) -> mark(__(X1,X2))
 and(mark(X1),X2) -> mark(and(X1,X2))
 isNePal(mark(X)) -> mark(isNePal(X))
 proper(__(X1,X2)) -> __(proper(X1),proper(X2))
 proper(nil()) -> ok(nil())
 proper(and(X1,X2)) -> and(proper(X1),proper(X2))
 proper(tt()) -> ok(tt())
 proper(isNePal(X)) -> isNePal(proper(X))
 __(ok(X1),ok(X2)) -> ok(__(X1,X2))
 and(ok(X1),ok(X2)) -> ok(and(X1,X2))
 isNePal(ok(X)) -> ok(isNePal(X))
 top(mark(X)) -> top(proper(X))
 top(ok(X)) -> top(active(X))

Proof:
 Bounds Processor:
  bound: 2
  enrichment: match
  automaton:
   final states: {25,24,10,9,8,7,6,5}
   transitions:
    active0(25) -> 5*
    active0(2) -> 5*
    active0(4) -> 5*
    active0(26) -> 5*
    active0(1) -> 5*
    active0(3) -> 5*
    __0(3,1) -> 6*
    __0(3,3) -> 6*
    __0(2,26) -> 6*
    __0(4,2) -> 6*
    __0(4,4) -> 6*
    __0(3,25) -> 6*
    __0(25,1) -> 6*
    __0(25,3) -> 6*
    __0(4,26) -> 6*
    __0(26,2) -> 6*
    __0(26,4) -> 6*
    __0(25,25) -> 6*
    __0(1,2) -> 6*
    __0(1,4) -> 6*
    __0(2,1) -> 6*
    __0(26,26) -> 6*
    __0(2,3) -> 6*
    __0(1,26) -> 6*
    __0(3,2) -> 6*
    __0(3,4) -> 6*
    __0(2,25) -> 6*
    __0(4,1) -> 6*
    __0(4,3) -> 6*
    __0(3,26) -> 6*
    __0(25,2) -> 6*
    __0(25,4) -> 6*
    __0(4,25) -> 6*
    __0(26,1) -> 6*
    __0(26,3) -> 6*
    __0(1,1) -> 6*
    __0(25,26) -> 6*
    __0(1,3) -> 6*
    __0(26,25) -> 6*
    __0(2,2) -> 6*
    __0(2,4) -> 6*
    __0(1,25) -> 6*
    mark0(25) -> 1*
    mark0(2) -> 1*
    mark0(4) -> 1*
    mark0(26) -> 1*
    mark0(1) -> 1*
    mark0(3) -> 1*
    nil0() -> 2*
    and0(3,1) -> 7*
    and0(3,3) -> 7*
    and0(2,26) -> 7*
    and0(4,2) -> 7*
    and0(4,4) -> 7*
    and0(3,25) -> 7*
    and0(25,1) -> 7*
    and0(25,3) -> 7*
    and0(4,26) -> 7*
    and0(26,2) -> 7*
    and0(26,4) -> 7*
    and0(25,25) -> 7*
    and0(1,2) -> 7*
    and0(1,4) -> 7*
    and0(2,1) -> 7*
    and0(26,26) -> 7*
    and0(2,3) -> 7*
    and0(1,26) -> 7*
    and0(3,2) -> 7*
    and0(3,4) -> 7*
    and0(2,25) -> 7*
    and0(4,1) -> 7*
    and0(4,3) -> 7*
    and0(3,26) -> 7*
    and0(25,2) -> 7*
    and0(25,4) -> 7*
    and0(4,25) -> 7*
    and0(26,1) -> 7*
    and0(26,3) -> 7*
    and0(1,1) -> 7*
    and0(25,26) -> 7*
    and0(1,3) -> 7*
    and0(26,25) -> 7*
    and0(2,2) -> 7*
    and0(2,4) -> 7*
    and0(1,25) -> 7*
    tt0() -> 3*
    isNePal0(25) -> 8*
    isNePal0(2) -> 8*
    isNePal0(4) -> 8*
    isNePal0(26) -> 8*
    isNePal0(1) -> 8*
    isNePal0(3) -> 8*
    proper0(25) -> 9*
    proper0(2) -> 9*
    proper0(4) -> 9*
    proper0(26) -> 9*
    proper0(1) -> 9*
    proper0(3) -> 9*
    ok0(25) -> 4*
    ok0(2) -> 4*
    ok0(4) -> 4*
    ok0(26) -> 4*
    ok0(1) -> 4*
    ok0(3) -> 4*
    top0(25) -> 10*
    top0(2) -> 10*
    top0(4) -> 10*
    top0(26) -> 10*
    top0(1) -> 10*
    top0(3) -> 10*
    top1(25) -> 10*
    top1(24) -> 10*
    top1(9) -> 10*
    active1(25) -> 5,24*
    active1(2) -> 24*,5,9
    active1(4) -> 24*,5,9
    active1(26) -> 5,24*
    active1(1) -> 24*,5,9
    active1(3) -> 24*,5,9
    proper1(25) -> 9*
    proper1(2) -> 9*
    proper1(4) -> 9*
    proper1(26) -> 9*
    proper1(1) -> 9*
    proper1(3) -> 9*
    ok1(7) -> 7*
    ok1(2) -> 25*,4,9
    ok1(26) -> 4,25*
    ok1(6) -> 6*
    ok1(8) -> 8*
    isNePal1(25) -> 8*
    isNePal1(2) -> 8*
    isNePal1(4) -> 8*
    isNePal1(26) -> 8*
    isNePal1(1) -> 8*
    isNePal1(3) -> 8*
    and1(3,1) -> 7*
    and1(3,3) -> 7*
    and1(2,26) -> 7*
    and1(4,2) -> 7*
    and1(4,4) -> 7*
    and1(3,25) -> 7*
    and1(25,1) -> 7*
    and1(25,3) -> 7*
    and1(4,26) -> 7*
    and1(26,2) -> 7*
    and1(26,4) -> 7*
    and1(25,25) -> 7*
    and1(1,2) -> 7*
    and1(1,4) -> 7*
    and1(2,1) -> 7*
    and1(26,26) -> 7*
    and1(2,3) -> 7*
    and1(1,26) -> 7*
    and1(3,2) -> 7*
    and1(3,4) -> 7*
    and1(2,25) -> 7*
    and1(4,1) -> 7*
    and1(4,3) -> 7*
    and1(3,26) -> 7*
    and1(25,2) -> 7*
    and1(25,4) -> 7*
    and1(4,25) -> 7*
    and1(26,1) -> 7*
    and1(26,3) -> 7*
    and1(1,1) -> 7*
    and1(25,26) -> 7*
    and1(1,3) -> 7*
    and1(26,25) -> 7*
    and1(2,2) -> 7*
    and1(2,4) -> 7*
    and1(1,25) -> 7*
    __1(3,1) -> 6*
    __1(3,3) -> 6*
    __1(2,26) -> 6*
    __1(4,2) -> 6*
    __1(4,4) -> 6*
    __1(3,25) -> 6*
    __1(25,1) -> 6*
    __1(25,3) -> 6*
    __1(4,26) -> 6*
    __1(26,2) -> 6*
    __1(26,4) -> 6*
    __1(25,25) -> 6*
    __1(1,2) -> 6*
    __1(1,4) -> 6*
    __1(2,1) -> 6*
    __1(26,26) -> 6*
    __1(2,3) -> 6*
    __1(1,26) -> 6*
    __1(3,2) -> 6*
    __1(3,4) -> 6*
    __1(2,25) -> 6*
    __1(4,1) -> 6*
    __1(4,3) -> 6*
    __1(3,26) -> 6*
    __1(25,2) -> 6*
    __1(25,4) -> 6*
    __1(4,25) -> 6*
    __1(26,1) -> 6*
    __1(26,3) -> 6*
    __1(1,1) -> 6*
    __1(25,26) -> 6*
    __1(1,3) -> 6*
    __1(26,25) -> 6*
    __1(2,2) -> 6*
    __1(2,4) -> 6*
    __1(1,25) -> 6*
    tt1() -> 26*,3,2
    nil1() -> 2*
    mark1(7) -> 7*
    mark1(6) -> 6*
    mark1(8) -> 8*
    ok2(7) -> 7*
    ok2(2) -> 4,25*,9
    ok2(26) -> 4,25*
    ok2(6) -> 6*
    ok2(8) -> 8*
    isNePal2(2) -> 8*
    isNePal2(26) -> 8*
    and2(2,26) -> 7*
    and2(26,2) -> 7*
    and2(26,26) -> 7*
    and2(2,2) -> 7*
    __2(2,26) -> 6*
    __2(26,2) -> 6*
    __2(26,26) -> 6*
    __2(2,2) -> 6*
    tt2() -> 3,26*,2
    nil2() -> 2*
    top2(5) -> 10*
    top2(24) -> 10*
    active2(2) -> 9,24*,5
    active2(26) -> 24*,5
  problem:
   
  Qed