Problem:
active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
active(__(X,nil())) -> mark(X)
active(__(nil(),X)) -> mark(X)
active(and(tt(),X)) -> mark(X)
active(isNePal(__(I,__(P,I)))) -> mark(tt())
active(__(X1,X2)) -> __(active(X1),X2)
active(__(X1,X2)) -> __(X1,active(X2))
active(and(X1,X2)) -> and(active(X1),X2)
active(isNePal(X)) -> isNePal(active(X))
__(mark(X1),X2) -> mark(__(X1,X2))
__(X1,mark(X2)) -> mark(__(X1,X2))
and(mark(X1),X2) -> mark(and(X1,X2))
isNePal(mark(X)) -> mark(isNePal(X))
proper(__(X1,X2)) -> __(proper(X1),proper(X2))
proper(nil()) -> ok(nil())
proper(and(X1,X2)) -> and(proper(X1),proper(X2))
proper(tt()) -> ok(tt())
proper(isNePal(X)) -> isNePal(proper(X))
__(ok(X1),ok(X2)) -> ok(__(X1,X2))
and(ok(X1),ok(X2)) -> ok(and(X1,X2))
isNePal(ok(X)) -> ok(isNePal(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {25,24,10,9,8,7,6,5}
transitions:
active0(25) -> 5*
active0(2) -> 5*
active0(4) -> 5*
active0(26) -> 5*
active0(1) -> 5*
active0(3) -> 5*
__0(3,1) -> 6*
__0(3,3) -> 6*
__0(2,26) -> 6*
__0(4,2) -> 6*
__0(4,4) -> 6*
__0(3,25) -> 6*
__0(25,1) -> 6*
__0(25,3) -> 6*
__0(4,26) -> 6*
__0(26,2) -> 6*
__0(26,4) -> 6*
__0(25,25) -> 6*
__0(1,2) -> 6*
__0(1,4) -> 6*
__0(2,1) -> 6*
__0(26,26) -> 6*
__0(2,3) -> 6*
__0(1,26) -> 6*
__0(3,2) -> 6*
__0(3,4) -> 6*
__0(2,25) -> 6*
__0(4,1) -> 6*
__0(4,3) -> 6*
__0(3,26) -> 6*
__0(25,2) -> 6*
__0(25,4) -> 6*
__0(4,25) -> 6*
__0(26,1) -> 6*
__0(26,3) -> 6*
__0(1,1) -> 6*
__0(25,26) -> 6*
__0(1,3) -> 6*
__0(26,25) -> 6*
__0(2,2) -> 6*
__0(2,4) -> 6*
__0(1,25) -> 6*
mark0(25) -> 1*
mark0(2) -> 1*
mark0(4) -> 1*
mark0(26) -> 1*
mark0(1) -> 1*
mark0(3) -> 1*
nil0() -> 2*
and0(3,1) -> 7*
and0(3,3) -> 7*
and0(2,26) -> 7*
and0(4,2) -> 7*
and0(4,4) -> 7*
and0(3,25) -> 7*
and0(25,1) -> 7*
and0(25,3) -> 7*
and0(4,26) -> 7*
and0(26,2) -> 7*
and0(26,4) -> 7*
and0(25,25) -> 7*
and0(1,2) -> 7*
and0(1,4) -> 7*
and0(2,1) -> 7*
and0(26,26) -> 7*
and0(2,3) -> 7*
and0(1,26) -> 7*
and0(3,2) -> 7*
and0(3,4) -> 7*
and0(2,25) -> 7*
and0(4,1) -> 7*
and0(4,3) -> 7*
and0(3,26) -> 7*
and0(25,2) -> 7*
and0(25,4) -> 7*
and0(4,25) -> 7*
and0(26,1) -> 7*
and0(26,3) -> 7*
and0(1,1) -> 7*
and0(25,26) -> 7*
and0(1,3) -> 7*
and0(26,25) -> 7*
and0(2,2) -> 7*
and0(2,4) -> 7*
and0(1,25) -> 7*
tt0() -> 3*
isNePal0(25) -> 8*
isNePal0(2) -> 8*
isNePal0(4) -> 8*
isNePal0(26) -> 8*
isNePal0(1) -> 8*
isNePal0(3) -> 8*
proper0(25) -> 9*
proper0(2) -> 9*
proper0(4) -> 9*
proper0(26) -> 9*
proper0(1) -> 9*
proper0(3) -> 9*
ok0(25) -> 4*
ok0(2) -> 4*
ok0(4) -> 4*
ok0(26) -> 4*
ok0(1) -> 4*
ok0(3) -> 4*
top0(25) -> 10*
top0(2) -> 10*
top0(4) -> 10*
top0(26) -> 10*
top0(1) -> 10*
top0(3) -> 10*
top1(25) -> 10*
top1(24) -> 10*
top1(9) -> 10*
active1(25) -> 5,24*
active1(2) -> 24*,5,9
active1(4) -> 24*,5,9
active1(26) -> 5,24*
active1(1) -> 24*,5,9
active1(3) -> 24*,5,9
proper1(25) -> 9*
proper1(2) -> 9*
proper1(4) -> 9*
proper1(26) -> 9*
proper1(1) -> 9*
proper1(3) -> 9*
ok1(7) -> 7*
ok1(2) -> 25*,4,9
ok1(26) -> 4,25*
ok1(6) -> 6*
ok1(8) -> 8*
isNePal1(25) -> 8*
isNePal1(2) -> 8*
isNePal1(4) -> 8*
isNePal1(26) -> 8*
isNePal1(1) -> 8*
isNePal1(3) -> 8*
and1(3,1) -> 7*
and1(3,3) -> 7*
and1(2,26) -> 7*
and1(4,2) -> 7*
and1(4,4) -> 7*
and1(3,25) -> 7*
and1(25,1) -> 7*
and1(25,3) -> 7*
and1(4,26) -> 7*
and1(26,2) -> 7*
and1(26,4) -> 7*
and1(25,25) -> 7*
and1(1,2) -> 7*
and1(1,4) -> 7*
and1(2,1) -> 7*
and1(26,26) -> 7*
and1(2,3) -> 7*
and1(1,26) -> 7*
and1(3,2) -> 7*
and1(3,4) -> 7*
and1(2,25) -> 7*
and1(4,1) -> 7*
and1(4,3) -> 7*
and1(3,26) -> 7*
and1(25,2) -> 7*
and1(25,4) -> 7*
and1(4,25) -> 7*
and1(26,1) -> 7*
and1(26,3) -> 7*
and1(1,1) -> 7*
and1(25,26) -> 7*
and1(1,3) -> 7*
and1(26,25) -> 7*
and1(2,2) -> 7*
and1(2,4) -> 7*
and1(1,25) -> 7*
__1(3,1) -> 6*
__1(3,3) -> 6*
__1(2,26) -> 6*
__1(4,2) -> 6*
__1(4,4) -> 6*
__1(3,25) -> 6*
__1(25,1) -> 6*
__1(25,3) -> 6*
__1(4,26) -> 6*
__1(26,2) -> 6*
__1(26,4) -> 6*
__1(25,25) -> 6*
__1(1,2) -> 6*
__1(1,4) -> 6*
__1(2,1) -> 6*
__1(26,26) -> 6*
__1(2,3) -> 6*
__1(1,26) -> 6*
__1(3,2) -> 6*
__1(3,4) -> 6*
__1(2,25) -> 6*
__1(4,1) -> 6*
__1(4,3) -> 6*
__1(3,26) -> 6*
__1(25,2) -> 6*
__1(25,4) -> 6*
__1(4,25) -> 6*
__1(26,1) -> 6*
__1(26,3) -> 6*
__1(1,1) -> 6*
__1(25,26) -> 6*
__1(1,3) -> 6*
__1(26,25) -> 6*
__1(2,2) -> 6*
__1(2,4) -> 6*
__1(1,25) -> 6*
tt1() -> 26*,3,2
nil1() -> 2*
mark1(7) -> 7*
mark1(6) -> 6*
mark1(8) -> 8*
ok2(7) -> 7*
ok2(2) -> 4,25*,9
ok2(26) -> 4,25*
ok2(6) -> 6*
ok2(8) -> 8*
isNePal2(2) -> 8*
isNePal2(26) -> 8*
and2(2,26) -> 7*
and2(26,2) -> 7*
and2(26,26) -> 7*
and2(2,2) -> 7*
__2(2,26) -> 6*
__2(26,2) -> 6*
__2(26,26) -> 6*
__2(2,2) -> 6*
tt2() -> 3,26*,2
nil2() -> 2*
top2(5) -> 10*
top2(24) -> 10*
active2(2) -> 9,24*,5
active2(26) -> 24*,5
problem:
Qed