Problem: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) active(__(X,nil())) -> mark(X) active(__(nil(),X)) -> mark(X) active(and(tt(),X)) -> mark(X) active(isNePal(__(I,__(P,I)))) -> mark(tt()) active(__(X1,X2)) -> __(active(X1),X2) active(__(X1,X2)) -> __(X1,active(X2)) active(and(X1,X2)) -> and(active(X1),X2) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1),X2) -> mark(__(X1,X2)) __(X1,mark(X2)) -> mark(__(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1,X2)) -> __(proper(X1),proper(X2)) proper(nil()) -> ok(nil()) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(tt()) -> ok(tt()) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1),ok(X2)) -> ok(__(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {25,24,10,9,8,7,6,5} transitions: active0(25) -> 5* active0(2) -> 5* active0(4) -> 5* active0(26) -> 5* active0(1) -> 5* active0(3) -> 5* __0(3,1) -> 6* __0(3,3) -> 6* __0(2,26) -> 6* __0(4,2) -> 6* __0(4,4) -> 6* __0(3,25) -> 6* __0(25,1) -> 6* __0(25,3) -> 6* __0(4,26) -> 6* __0(26,2) -> 6* __0(26,4) -> 6* __0(25,25) -> 6* __0(1,2) -> 6* __0(1,4) -> 6* __0(2,1) -> 6* __0(26,26) -> 6* __0(2,3) -> 6* __0(1,26) -> 6* __0(3,2) -> 6* __0(3,4) -> 6* __0(2,25) -> 6* __0(4,1) -> 6* __0(4,3) -> 6* __0(3,26) -> 6* __0(25,2) -> 6* __0(25,4) -> 6* __0(4,25) -> 6* __0(26,1) -> 6* __0(26,3) -> 6* __0(1,1) -> 6* __0(25,26) -> 6* __0(1,3) -> 6* __0(26,25) -> 6* __0(2,2) -> 6* __0(2,4) -> 6* __0(1,25) -> 6* mark0(25) -> 1* mark0(2) -> 1* mark0(4) -> 1* mark0(26) -> 1* mark0(1) -> 1* mark0(3) -> 1* nil0() -> 2* and0(3,1) -> 7* and0(3,3) -> 7* and0(2,26) -> 7* and0(4,2) -> 7* and0(4,4) -> 7* and0(3,25) -> 7* and0(25,1) -> 7* and0(25,3) -> 7* and0(4,26) -> 7* and0(26,2) -> 7* and0(26,4) -> 7* and0(25,25) -> 7* and0(1,2) -> 7* and0(1,4) -> 7* and0(2,1) -> 7* and0(26,26) -> 7* and0(2,3) -> 7* and0(1,26) -> 7* and0(3,2) -> 7* and0(3,4) -> 7* and0(2,25) -> 7* and0(4,1) -> 7* and0(4,3) -> 7* and0(3,26) -> 7* and0(25,2) -> 7* and0(25,4) -> 7* and0(4,25) -> 7* and0(26,1) -> 7* and0(26,3) -> 7* and0(1,1) -> 7* and0(25,26) -> 7* and0(1,3) -> 7* and0(26,25) -> 7* and0(2,2) -> 7* and0(2,4) -> 7* and0(1,25) -> 7* tt0() -> 3* isNePal0(25) -> 8* isNePal0(2) -> 8* isNePal0(4) -> 8* isNePal0(26) -> 8* isNePal0(1) -> 8* isNePal0(3) -> 8* proper0(25) -> 9* proper0(2) -> 9* proper0(4) -> 9* proper0(26) -> 9* proper0(1) -> 9* proper0(3) -> 9* ok0(25) -> 4* ok0(2) -> 4* ok0(4) -> 4* ok0(26) -> 4* ok0(1) -> 4* ok0(3) -> 4* top0(25) -> 10* top0(2) -> 10* top0(4) -> 10* top0(26) -> 10* top0(1) -> 10* top0(3) -> 10* top1(25) -> 10* top1(24) -> 10* top1(9) -> 10* active1(25) -> 5,24* active1(2) -> 24*,5,9 active1(4) -> 24*,5,9 active1(26) -> 5,24* active1(1) -> 24*,5,9 active1(3) -> 24*,5,9 proper1(25) -> 9* proper1(2) -> 9* proper1(4) -> 9* proper1(26) -> 9* proper1(1) -> 9* proper1(3) -> 9* ok1(7) -> 7* ok1(2) -> 25*,4,9 ok1(26) -> 4,25* ok1(6) -> 6* ok1(8) -> 8* isNePal1(25) -> 8* isNePal1(2) -> 8* isNePal1(4) -> 8* isNePal1(26) -> 8* isNePal1(1) -> 8* isNePal1(3) -> 8* and1(3,1) -> 7* and1(3,3) -> 7* and1(2,26) -> 7* and1(4,2) -> 7* and1(4,4) -> 7* and1(3,25) -> 7* and1(25,1) -> 7* and1(25,3) -> 7* and1(4,26) -> 7* and1(26,2) -> 7* and1(26,4) -> 7* and1(25,25) -> 7* and1(1,2) -> 7* and1(1,4) -> 7* and1(2,1) -> 7* and1(26,26) -> 7* and1(2,3) -> 7* and1(1,26) -> 7* and1(3,2) -> 7* and1(3,4) -> 7* and1(2,25) -> 7* and1(4,1) -> 7* and1(4,3) -> 7* and1(3,26) -> 7* and1(25,2) -> 7* and1(25,4) -> 7* and1(4,25) -> 7* and1(26,1) -> 7* and1(26,3) -> 7* and1(1,1) -> 7* and1(25,26) -> 7* and1(1,3) -> 7* and1(26,25) -> 7* and1(2,2) -> 7* and1(2,4) -> 7* and1(1,25) -> 7* __1(3,1) -> 6* __1(3,3) -> 6* __1(2,26) -> 6* __1(4,2) -> 6* __1(4,4) -> 6* __1(3,25) -> 6* __1(25,1) -> 6* __1(25,3) -> 6* __1(4,26) -> 6* __1(26,2) -> 6* __1(26,4) -> 6* __1(25,25) -> 6* __1(1,2) -> 6* __1(1,4) -> 6* __1(2,1) -> 6* __1(26,26) -> 6* __1(2,3) -> 6* __1(1,26) -> 6* __1(3,2) -> 6* __1(3,4) -> 6* __1(2,25) -> 6* __1(4,1) -> 6* __1(4,3) -> 6* __1(3,26) -> 6* __1(25,2) -> 6* __1(25,4) -> 6* __1(4,25) -> 6* __1(26,1) -> 6* __1(26,3) -> 6* __1(1,1) -> 6* __1(25,26) -> 6* __1(1,3) -> 6* __1(26,25) -> 6* __1(2,2) -> 6* __1(2,4) -> 6* __1(1,25) -> 6* tt1() -> 26*,3,2 nil1() -> 2* mark1(7) -> 7* mark1(6) -> 6* mark1(8) -> 8* ok2(7) -> 7* ok2(2) -> 4,25*,9 ok2(26) -> 4,25* ok2(6) -> 6* ok2(8) -> 8* isNePal2(2) -> 8* isNePal2(26) -> 8* and2(2,26) -> 7* and2(26,2) -> 7* and2(26,26) -> 7* and2(2,2) -> 7* __2(2,26) -> 6* __2(26,2) -> 6* __2(26,26) -> 6* __2(2,2) -> 6* tt2() -> 3,26*,2 nil2() -> 2* top2(5) -> 10* top2(24) -> 10* active2(2) -> 9,24*,5 active2(26) -> 24*,5 problem: Qed