Problem: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X U11(tt()) -> U12(tt()) U12(tt()) -> tt() isNePal(__(I,__(P,I))) -> U11(tt()) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {14,13,12,11,6,5,4,3} transitions: tt2() -> 13,12,14*,7,5,2,3 __0(2,12) -> 3* __0(12,14) -> 3* __0(2,14) -> 3* __0(14,2) -> 3* __0(14,12) -> 3* __0(14,14) -> 3* __0(11,2) -> 3* __0(1,2) -> 3* __0(11,12) -> 3* __0(1,12) -> 3* __0(11,14) -> 3* __0(1,14) -> 3* __0(12,1) -> 3* __0(2,1) -> 3* __0(12,11) -> 3* __0(2,11) -> 3* __0(14,1) -> 3* __0(14,11) -> 3* __0(11,1) -> 3* __0(1,1) -> 3* __0(11,11) -> 3* __0(1,11) -> 3* __0(12,2) -> 3* __0(2,2) -> 3* __0(12,12) -> 3* nil0() -> 11*,3,1 U110(12) -> 4* U110(2) -> 4* U110(14) -> 4* U110(11) -> 4* U110(1) -> 4* U120(12) -> 5* U120(2) -> 5* U120(14) -> 5* U120(11) -> 5* U120(1) -> 5* isNePal0(12) -> 6* isNePal0(2) -> 6* isNePal0(14) -> 6* isNePal0(11) -> 6* isNePal0(1) -> 6* U121(12) -> 13*,5,4 U121(7) -> 4* U121(14) -> 5,13*,4 1 -> 3* 2 -> 3* 11 -> 3* 12 -> 3* 14 -> 3* problem: Qed