Problem:
__(__(X,Y),Z) -> __(X,__(Y,Z))
__(X,nil()) -> X
__(nil(),X) -> X
U11(tt()) -> U12(tt())
U12(tt()) -> tt()
isNePal(__(I,__(P,I))) -> U11(tt())
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {14,13,12,11,6,5,4,3}
transitions:
tt2() -> 13,12,14*,7,5,2,3
__0(2,12) -> 3*
__0(12,14) -> 3*
__0(2,14) -> 3*
__0(14,2) -> 3*
__0(14,12) -> 3*
__0(14,14) -> 3*
__0(11,2) -> 3*
__0(1,2) -> 3*
__0(11,12) -> 3*
__0(1,12) -> 3*
__0(11,14) -> 3*
__0(1,14) -> 3*
__0(12,1) -> 3*
__0(2,1) -> 3*
__0(12,11) -> 3*
__0(2,11) -> 3*
__0(14,1) -> 3*
__0(14,11) -> 3*
__0(11,1) -> 3*
__0(1,1) -> 3*
__0(11,11) -> 3*
__0(1,11) -> 3*
__0(12,2) -> 3*
__0(2,2) -> 3*
__0(12,12) -> 3*
nil0() -> 11*,3,1
U110(12) -> 4*
U110(2) -> 4*
U110(14) -> 4*
U110(11) -> 4*
U110(1) -> 4*
U120(12) -> 5*
U120(2) -> 5*
U120(14) -> 5*
U120(11) -> 5*
U120(1) -> 5*
isNePal0(12) -> 6*
isNePal0(2) -> 6*
isNePal0(14) -> 6*
isNePal0(11) -> 6*
isNePal0(1) -> 6*
U121(12) -> 13*,5,4
U121(7) -> 4*
U121(14) -> 5,13*,4
1 -> 3*
2 -> 3*
11 -> 3*
12 -> 3*
14 -> 3*
problem:
Qed