We consider the following Problem: Strict Trs: { __(__(X, Y), Z) -> __(X, __(Y, Z)) , __(X, nil()) -> X , __(nil(), X) -> X , U11(tt()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , U22(tt()) -> tt() , U31(tt()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U42(tt()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , U52(tt()) -> tt() , U61(tt()) -> tt() , U71(tt(), P) -> U72(isPal(activate(P))) , U72(tt()) -> tt() , U81(tt()) -> tt() , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isNePal(n____(I, __(P, I))) -> U71(isQid(activate(I)), activate(P)) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , nil() -> n__nil() , __(X1, X2) -> n____(X1, X2) , a() -> n__a() , e() -> n__e() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { __(__(X, Y), Z) -> __(X, __(Y, Z)) , isNePal(n____(I, __(P, I))) -> U71(isQid(activate(I)), activate(P)) , __(X, nil()) -> X , __(nil(), X) -> X} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { U11(tt()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , U22(tt()) -> tt() , U31(tt()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U42(tt()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , U52(tt()) -> tt() , U61(tt()) -> tt() , U71(tt(), P) -> U72(isPal(activate(P))) , U72(tt()) -> tt() , U81(tt()) -> tt() , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , nil() -> n__nil() , __(X1, X2) -> n____(X1, X2) , a() -> n__a() , e() -> n__e() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 1] x1 + [0] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [2] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 1] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U22(tt()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , nil() -> n__nil() , __(X1, X2) -> n____(X1, X2) , a() -> n__a() , e() -> n__e() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {U22(tt()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [1] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 1] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , nil() -> n__nil() , __(X1, X2) -> n____(X1, X2) , a() -> n__a() , e() -> n__e() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {nil() -> n__nil()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [2] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [0] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , __(X1, X2) -> n____(X1, X2) , a() -> n__a() , e() -> n__e() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {__(X1, X2) -> n____(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , a() -> n__a() , e() -> n__e() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a() -> n__a()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [2] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , e() -> n__e() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {e() -> n__e()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [2] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , i() -> n__i() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {i() -> n__i()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [2] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__a()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isQid(n__a()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [1] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [2] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , o() -> n__o() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {o() -> n__o()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [2] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , u() -> n__u() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {u() -> n__u()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [2] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , isQid(n__u()) -> tt() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isQid(n__u()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 1] x1 + [0] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [2] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [2] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {U21(tt(), V2) -> U22(isList(activate(V2)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [0] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isQid(n__o()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [2] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 1] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 2] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 1] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [2] [1] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [2] [2] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , isQid(n__i()) -> tt() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isQid(n__i()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 1] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [0] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [2] [0] n__o() = [1] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [2] [0] o() = [1] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U41(tt(), V2) -> U42(isNeList(activate(V2))) , U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {U41(tt(), V2) -> U42(isNeList(activate(V2)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [0] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isQid(n__e()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [0] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 1] x1 + [0] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [2] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [1] [0] a() = [0] [0] e() = [2] [0] i() = [0] [0] o() = [0] [0] u() = [1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , isPal(n__nil()) -> tt() , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isPal(n__nil()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [1 0] [1 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [0] [0 0] [0] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U22(x1) = [1 0] x1 + [0] [0 0] [0] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [0] [1 0] [0] isPal(x1) = [1 0] x1 + [1] [0 0] [1] U81(x1) = [1 0] x1 + [1] [1 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [1] [0] n__i() = [0] [0] n__o() = [1] [0] n__u() = [0] [0] a() = [0] [0] e() = [1] [0] i() = [0] [0] o() = [1] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(V) -> U31(isQid(activate(V))) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [1 1] [1 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [0] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [0] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [0] U61(x1) = [1 0] x1 + [1] [0 1] [0] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [1 1] [0] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [1] [3] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [1] [3] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U51(tt(), V2) -> U52(isList(activate(V2))) , U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isNeList(V) -> U31(isQid(activate(V))) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {U51(tt(), V2) -> U52(isList(activate(V2)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [1 0] [0 0] [0] nil() = [2] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [2] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [1] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [1 0] [2] n__nil() = [2] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [2] [0] n__e() = [2] [0] n__i() = [2] [0] n__o() = [2] [0] n__u() = [2] [0] a() = [2] [0] e() = [2] [0] i() = [2] [0] o() = [2] [0] u() = [2] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isList(n__nil()) -> tt() , isNeList(V) -> U31(isQid(activate(V))) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isList(n__nil()) -> tt()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 1] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 1] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [0] [0 0] [1] isList(x1) = [1 0] x1 + [1] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 1] x1 + [1 0] x2 + [1] [0 0] [0 1] [0] U52(x1) = [1 0] x1 + [0] [0 0] [0] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , activate(n__nil()) -> nil() , activate(n____(X1, X2)) -> __(X1, X2) , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , activate(X) -> X} Weak Trs: { isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 1] [0 0] [0] nil() = [0] [0] U11(x1) = [1 0] x1 + [0] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U22(x1) = [1 0] x1 + [0] [0 0] [0] isList(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [1] U31(x1) = [1 1] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U42(x1) = [1 0] x1 + [0] [0 0] [0] isNeList(x1) = [1 0] x1 + [0] [0 0] [0] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U52(x1) = [1 0] x1 + [0] [0 0] [0] U61(x1) = [1 0] x1 + [0] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U72(x1) = [1 0] x1 + [0] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [0] U81(x1) = [1 0] x1 + [0] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 1] [2] isNePal(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isNePal(V) -> U61(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , activate(n____(X1, X2)) -> __(X1, X2) , activate(X) -> X} Weak Trs: { activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isNePal(V) -> U61(isQid(activate(V)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [1 1] [1 1] [2] nil() = [0] [0] U11(x1) = [1 0] x1 + [0] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U22(x1) = [1 0] x1 + [1] [0 0] [0] isList(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [0] U31(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [1] [1 1] [3] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [2] U52(x1) = [1 0] x1 + [0] [0 0] [1] U61(x1) = [1 0] x1 + [1] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [0] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [2] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [2] [0 0] [1] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { U71(tt(), P) -> U72(isPal(activate(P))) , isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , activate(n____(X1, X2)) -> __(X1, X2) , activate(X) -> X} Weak Trs: { isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {U71(tt(), P) -> U72(isPal(activate(P)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 0] [0] nil() = [1] [3] U11(x1) = [1 0] x1 + [0] [0 0] [1] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] U22(x1) = [1 0] x1 + [0] [0 0] [0] isList(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [0] [0 1] [2] U31(x1) = [1 0] x1 + [0] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [0] [0 0] [0] isNeList(x1) = [1 0] x1 + [0] [0 0] [1] U51(x1, x2) = [1 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [0] [0 0] [1] U61(x1) = [1 0] x1 + [0] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 2] x2 + [3] [0 0] [0 0] [0] U72(x1) = [1 0] x1 + [0] [0 0] [0] isPal(x1) = [1 1] x1 + [0] [0 0] [1] U81(x1) = [1 1] x1 + [1] [0 0] [1] n__nil() = [1] [3] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [1] [0 0] [0] isNePal(x1) = [1 0] x1 + [3] [0 1] [3] n__a() = [3] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [1] [0] n__u() = [0] [0] a() = [3] [0] e() = [0] [0] i() = [0] [0] o() = [1] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , activate(n____(X1, X2)) -> __(X1, X2) , activate(X) -> X} Weak Trs: { U71(tt(), P) -> U72(isPal(activate(P))) , isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isPal(V) -> U81(isNePal(activate(V)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [2] nil() = [0] [0] U11(x1) = [1 0] x1 + [0] [0 0] [0] tt() = [0] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U22(x1) = [1 0] x1 + [0] [0 0] [0] isList(x1) = [1 1] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [0] U31(x1) = [1 0] x1 + [0] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [0] [0 0] [2] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [0] [0 0] [0] U61(x1) = [1 0] x1 + [0] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [1] [0 0] [1] isPal(x1) = [1 0] x1 + [2] [0 0] [0] U81(x1) = [1 0] x1 + [0] [0 0] [0] n__nil() = [0] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] isQid(x1) = [1 0] x1 + [1] [0 0] [1] isNePal(x1) = [1 0] x1 + [1] [0 0] [2] n__a() = [0] [0] n__e() = [0] [0] n__i() = [0] [0] n__o() = [0] [0] n__u() = [0] [0] a() = [0] [0] e() = [0] [0] i() = [0] [0] o() = [0] [0] u() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , activate(n____(X1, X2)) -> __(X1, X2) , activate(X) -> X} Weak Trs: { isPal(V) -> U81(isNePal(activate(V))) , U71(tt(), P) -> U72(isPal(activate(P))) , isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isNeList(V) -> U31(isQid(activate(V)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] nil() = [3] [0] U11(x1) = [1 0] x1 + [1] [0 0] [1] tt() = [2] [1] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [1] [0 0] [1] isList(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] U31(x1) = [1 0] x1 + [0] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [1] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [1] [0 0] [1] U61(x1) = [1 0] x1 + [0] [0 0] [1] U71(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 1] [0 0] [3] U72(x1) = [1 0] x1 + [3] [0 0] [2] isPal(x1) = [1 0] x1 + [1] [0 0] [1] U81(x1) = [1 0] x1 + [1] [0 0] [1] n__nil() = [3] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [2] isNePal(x1) = [1 0] x1 + [0] [0 0] [2] n__a() = [2] [0] n__e() = [2] [0] n__i() = [2] [0] n__o() = [2] [0] n__u() = [2] [0] a() = [2] [0] e() = [2] [0] i() = [2] [0] o() = [2] [0] u() = [2] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { isList(V) -> U11(isNeList(activate(V))) , activate(n____(X1, X2)) -> __(X1, X2) , activate(X) -> X} Weak Trs: { isNeList(V) -> U31(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , U71(tt(), P) -> U72(isPal(activate(P))) , isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {isList(V) -> U11(isNeList(activate(V)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [1 1] [1 0] [0] nil() = [2] [2] U11(x1) = [1 0] x1 + [0] [0 0] [0] tt() = [1] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [1 0] [0] U22(x1) = [1 0] x1 + [0] [0 0] [0] isList(x1) = [1 0] x1 + [1] [1 1] [0] activate(x1) = [1 0] x1 + [0] [1 0] [0] U31(x1) = [1 0] x1 + [0] [0 0] [0] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [1 0] [0] U42(x1) = [1 0] x1 + [1] [1 0] [0] isNeList(x1) = [1 0] x1 + [0] [0 1] [0] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] U52(x1) = [1 0] x1 + [0] [0 0] [0] U61(x1) = [1 0] x1 + [0] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [0] [0 0] [1] isPal(x1) = [1 0] x1 + [3] [0 0] [1] U81(x1) = [1 0] x1 + [3] [0 0] [1] n__nil() = [2] [2] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [1 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [0] [0 0] [2] n__a() = [1] [0] n__e() = [1] [0] n__i() = [2] [0] n__o() = [1] [0] n__u() = [1] [0] a() = [1] [0] e() = [1] [0] i() = [2] [0] o() = [1] [0] u() = [1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n____(X1, X2)) -> __(X1, X2) , activate(X) -> X} Weak Trs: { isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , U71(tt(), P) -> U72(isPal(activate(P))) , isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n____(X1, X2)) -> __(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [0] nil() = [2] [0] U11(x1) = [1 0] x1 + [0] [0 0] [1] tt() = [3] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [0] [0 0] [1] isList(x1) = [1 0] x1 + [3] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 0] [1] U31(x1) = [1 0] x1 + [0] [0 0] [1] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] U42(x1) = [1 0] x1 + [0] [0 0] [1] isNeList(x1) = [1 0] x1 + [2] [0 0] [1] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U52(x1) = [1 0] x1 + [0] [0 0] [1] U61(x1) = [1 0] x1 + [0] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [0] [0 0] [1] isPal(x1) = [1 0] x1 + [2] [0 0] [1] U81(x1) = [1 0] x1 + [0] [0 0] [1] n__nil() = [2] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [1] [0 0] [2] n__a() = [3] [0] n__e() = [3] [0] n__i() = [3] [0] n__o() = [3] [0] n__u() = [3] [0] a() = [3] [0] e() = [3] [0] i() = [3] [0] o() = [3] [0] u() = [3] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(X) -> X} Weak Trs: { activate(n____(X1, X2)) -> __(X1, X2) , isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , U71(tt(), P) -> U72(isPal(activate(P))) , isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2}, Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {}, Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1}, Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: __(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [0] nil() = [2] [0] U11(x1) = [1 0] x1 + [0] [0 1] [0] tt() = [3] [0] U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] U22(x1) = [1 0] x1 + [0] [0 0] [1] isList(x1) = [1 0] x1 + [3] [0 1] [1] activate(x1) = [1 0] x1 + [1] [0 1] [1] U31(x1) = [1 0] x1 + [0] [0 0] [0] U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] U42(x1) = [1 0] x1 + [0] [0 0] [0] isNeList(x1) = [1 0] x1 + [2] [0 1] [0] U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] U52(x1) = [1 0] x1 + [0] [0 0] [0] U61(x1) = [1 0] x1 + [0] [0 0] [1] U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [1] U72(x1) = [1 0] x1 + [0] [0 0] [1] isPal(x1) = [1 0] x1 + [2] [0 0] [1] U81(x1) = [1 0] x1 + [0] [0 0] [1] n__nil() = [2] [0] n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [0] isQid(x1) = [1 0] x1 + [0] [0 0] [1] isNePal(x1) = [1 0] x1 + [1] [0 0] [2] n__a() = [3] [0] n__e() = [3] [0] n__i() = [3] [0] n__o() = [3] [0] n__u() = [3] [0] a() = [3] [0] e() = [3] [0] i() = [3] [0] o() = [3] [0] u() = [3] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { activate(X) -> X , activate(n____(X1, X2)) -> __(X1, X2) , isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , U71(tt(), P) -> U72(isPal(activate(P))) , isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(X) -> X , activate(n____(X1, X2)) -> __(X1, X2) , isList(V) -> U11(isNeList(activate(V))) , isNeList(V) -> U31(isQid(activate(V))) , isPal(V) -> U81(isNePal(activate(V))) , U71(tt(), P) -> U72(isPal(activate(P))) , isNePal(V) -> U61(isQid(activate(V))) , activate(n__nil()) -> nil() , activate(n__a()) -> a() , activate(n__e()) -> e() , activate(n__i()) -> i() , activate(n__o()) -> o() , activate(n__u()) -> u() , isList(n__nil()) -> tt() , U51(tt(), V2) -> U52(isList(activate(V2))) , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U41(isList(activate(V1)), activate(V2)) , isNeList(n____(V1, V2)) -> U51(isNeList(activate(V1)), activate(V2)) , isPal(n__nil()) -> tt() , isQid(n__e()) -> tt() , U41(tt(), V2) -> U42(isNeList(activate(V2))) , isQid(n__i()) -> tt() , isQid(n__o()) -> tt() , U21(tt(), V2) -> U22(isList(activate(V2))) , isQid(n__u()) -> tt() , u() -> n__u() , o() -> n__o() , isQid(n__a()) -> tt() , i() -> n__i() , e() -> n__e() , a() -> n__a() , __(X1, X2) -> n____(X1, X2) , nil() -> n__nil() , U22(tt()) -> tt() , U11(tt()) -> tt() , U31(tt()) -> tt() , U42(tt()) -> tt() , U52(tt()) -> tt() , U61(tt()) -> tt() , U72(tt()) -> tt() , U81(tt()) -> tt()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))