We consider the following Problem:

  Strict Trs:
    {  __(__(X, Y), Z) -> __(X, __(Y, Z))
     , __(X, nil()) -> X
     , __(nil(), X) -> X
     , U11(tt()) -> tt()
     , U21(tt(), V2) -> U22(isList(activate(V2)))
     , U22(tt()) -> tt()
     , U31(tt()) -> tt()
     , U41(tt(), V2) -> U42(isNeList(activate(V2)))
     , U42(tt()) -> tt()
     , U51(tt(), V2) -> U52(isList(activate(V2)))
     , U52(tt()) -> tt()
     , U61(tt()) -> tt()
     , U71(tt(), P) -> U72(isPal(activate(P)))
     , U72(tt()) -> tt()
     , U81(tt()) -> tt()
     , isList(V) -> U11(isNeList(activate(V)))
     , isList(n__nil()) -> tt()
     , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
     , isNeList(V) -> U31(isQid(activate(V)))
     , isNeList(n____(V1, V2)) ->
       U41(isList(activate(V1)), activate(V2))
     , isNeList(n____(V1, V2)) ->
       U51(isNeList(activate(V1)), activate(V2))
     , isNePal(V) -> U61(isQid(activate(V)))
     , isNePal(n____(I, __(P, I))) ->
       U71(isQid(activate(I)), activate(P))
     , isPal(V) -> U81(isNePal(activate(V)))
     , isPal(n__nil()) -> tt()
     , isQid(n__a()) -> tt()
     , isQid(n__e()) -> tt()
     , isQid(n__i()) -> tt()
     , isQid(n__o()) -> tt()
     , isQid(n__u()) -> tt()
     , nil() -> n__nil()
     , __(X1, X2) -> n____(X1, X2)
     , a() -> n__a()
     , e() -> n__e()
     , i() -> n__i()
     , o() -> n__o()
     , u() -> n__u()
     , activate(n__nil()) -> nil()
     , activate(n____(X1, X2)) -> __(X1, X2)
     , activate(n__a()) -> a()
     , activate(n__e()) -> e()
     , activate(n__i()) -> i()
     , activate(n__o()) -> o()
     , activate(n__u()) -> u()
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  Arguments of following rules are not normal-forms:
  {  __(__(X, Y), Z) -> __(X, __(Y, Z))
   , isNePal(n____(I, __(P, I))) ->
     U71(isQid(activate(I)), activate(P))
   , __(X, nil()) -> X
   , __(nil(), X) -> X}
  
  All above mentioned rules can be savely removed.
  
  We consider the following Problem:
  
    Strict Trs:
      {  U11(tt()) -> tt()
       , U21(tt(), V2) -> U22(isList(activate(V2)))
       , U22(tt()) -> tt()
       , U31(tt()) -> tt()
       , U41(tt(), V2) -> U42(isNeList(activate(V2)))
       , U42(tt()) -> tt()
       , U51(tt(), V2) -> U52(isList(activate(V2)))
       , U52(tt()) -> tt()
       , U61(tt()) -> tt()
       , U71(tt(), P) -> U72(isPal(activate(P)))
       , U72(tt()) -> tt()
       , U81(tt()) -> tt()
       , isList(V) -> U11(isNeList(activate(V)))
       , isList(n__nil()) -> tt()
       , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
       , isNeList(V) -> U31(isQid(activate(V)))
       , isNeList(n____(V1, V2)) ->
         U41(isList(activate(V1)), activate(V2))
       , isNeList(n____(V1, V2)) ->
         U51(isNeList(activate(V1)), activate(V2))
       , isNePal(V) -> U61(isQid(activate(V)))
       , isPal(V) -> U81(isNePal(activate(V)))
       , isPal(n__nil()) -> tt()
       , isQid(n__a()) -> tt()
       , isQid(n__e()) -> tt()
       , isQid(n__i()) -> tt()
       , isQid(n__o()) -> tt()
       , isQid(n__u()) -> tt()
       , nil() -> n__nil()
       , __(X1, X2) -> n____(X1, X2)
       , a() -> n__a()
       , e() -> n__e()
       , i() -> n__i()
       , o() -> n__o()
       , u() -> n__u()
       , activate(n__nil()) -> nil()
       , activate(n____(X1, X2)) -> __(X1, X2)
       , activate(n__a()) -> a()
       , activate(n__e()) -> e()
       , activate(n__i()) -> i()
       , activate(n__o()) -> o()
       , activate(n__u()) -> u()
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  U11(tt()) -> tt()
       , U31(tt()) -> tt()
       , U42(tt()) -> tt()
       , U52(tt()) -> tt()
       , U61(tt()) -> tt()
       , U72(tt()) -> tt()
       , U81(tt()) -> tt()}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
        Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
        Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
        Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
        Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
        Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
        Uargs(isQid) = {1}, Uargs(isNePal) = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                    [0 1]      [0 0]      [0]
       nil() = [0]
               [0]
       U11(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       tt() = [0]
              [0]
       U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       U22(x1) = [1 1] x1 + [0]
                 [0 0]      [1]
       isList(x1) = [1 0] x1 + [0]
                    [0 0]      [1]
       activate(x1) = [1 0] x1 + [0]
                      [0 0]      [2]
       U31(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       U42(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       isNeList(x1) = [1 0] x1 + [0]
                      [0 1]      [1]
       U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 1]      [0 1]      [1]
       U52(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       U61(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       U72(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       isPal(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
       U81(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       n__nil() = [0]
                  [0]
       n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 0]      [0 0]      [0]
       isQid(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
       isNePal(x1) = [1 0] x1 + [0]
                     [0 0]      [0]
       n__a() = [0]
                [0]
       n__e() = [0]
                [0]
       n__i() = [0]
                [0]
       n__o() = [0]
                [0]
       n__u() = [0]
                [0]
       a() = [0]
             [0]
       e() = [0]
             [0]
       i() = [0]
             [0]
       o() = [0]
             [0]
       u() = [0]
             [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  U21(tt(), V2) -> U22(isList(activate(V2)))
         , U22(tt()) -> tt()
         , U41(tt(), V2) -> U42(isNeList(activate(V2)))
         , U51(tt(), V2) -> U52(isList(activate(V2)))
         , U71(tt(), P) -> U72(isPal(activate(P)))
         , isList(V) -> U11(isNeList(activate(V)))
         , isList(n__nil()) -> tt()
         , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
         , isNeList(V) -> U31(isQid(activate(V)))
         , isNeList(n____(V1, V2)) ->
           U41(isList(activate(V1)), activate(V2))
         , isNeList(n____(V1, V2)) ->
           U51(isNeList(activate(V1)), activate(V2))
         , isNePal(V) -> U61(isQid(activate(V)))
         , isPal(V) -> U81(isNePal(activate(V)))
         , isPal(n__nil()) -> tt()
         , isQid(n__a()) -> tt()
         , isQid(n__e()) -> tt()
         , isQid(n__i()) -> tt()
         , isQid(n__o()) -> tt()
         , isQid(n__u()) -> tt()
         , nil() -> n__nil()
         , __(X1, X2) -> n____(X1, X2)
         , a() -> n__a()
         , e() -> n__e()
         , i() -> n__i()
         , o() -> n__o()
         , u() -> n__u()
         , activate(n__nil()) -> nil()
         , activate(n____(X1, X2)) -> __(X1, X2)
         , activate(n__a()) -> a()
         , activate(n__e()) -> e()
         , activate(n__i()) -> i()
         , activate(n__o()) -> o()
         , activate(n__u()) -> u()
         , activate(X) -> X}
      Weak Trs:
        {  U11(tt()) -> tt()
         , U31(tt()) -> tt()
         , U42(tt()) -> tt()
         , U52(tt()) -> tt()
         , U61(tt()) -> tt()
         , U72(tt()) -> tt()
         , U81(tt()) -> tt()}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {U22(tt()) -> tt()}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
          Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
          Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
          Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
          Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
          Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
          Uargs(isQid) = {1}, Uargs(isNePal) = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                      [0 0]      [0 0]      [0]
         nil() = [0]
                 [0]
         U11(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         tt() = [0]
                [1]
         U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         U22(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         isList(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
         activate(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
         U31(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         U42(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         isNeList(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
         U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         U52(x1) = [1 1] x1 + [1]
                   [0 0]      [1]
         U61(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         U72(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         isPal(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
         U81(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         n__nil() = [0]
                    [0]
         n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                         [0 0]      [0 0]      [0]
         isQid(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
         isNePal(x1) = [1 0] x1 + [0]
                       [0 0]      [0]
         n__a() = [0]
                  [0]
         n__e() = [0]
                  [0]
         n__i() = [0]
                  [0]
         n__o() = [0]
                  [0]
         n__u() = [0]
                  [0]
         a() = [0]
               [0]
         e() = [0]
               [0]
         i() = [0]
               [0]
         o() = [0]
               [0]
         u() = [0]
               [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  U21(tt(), V2) -> U22(isList(activate(V2)))
           , U41(tt(), V2) -> U42(isNeList(activate(V2)))
           , U51(tt(), V2) -> U52(isList(activate(V2)))
           , U71(tt(), P) -> U72(isPal(activate(P)))
           , isList(V) -> U11(isNeList(activate(V)))
           , isList(n__nil()) -> tt()
           , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
           , isNeList(V) -> U31(isQid(activate(V)))
           , isNeList(n____(V1, V2)) ->
             U41(isList(activate(V1)), activate(V2))
           , isNeList(n____(V1, V2)) ->
             U51(isNeList(activate(V1)), activate(V2))
           , isNePal(V) -> U61(isQid(activate(V)))
           , isPal(V) -> U81(isNePal(activate(V)))
           , isPal(n__nil()) -> tt()
           , isQid(n__a()) -> tt()
           , isQid(n__e()) -> tt()
           , isQid(n__i()) -> tt()
           , isQid(n__o()) -> tt()
           , isQid(n__u()) -> tt()
           , nil() -> n__nil()
           , __(X1, X2) -> n____(X1, X2)
           , a() -> n__a()
           , e() -> n__e()
           , i() -> n__i()
           , o() -> n__o()
           , u() -> n__u()
           , activate(n__nil()) -> nil()
           , activate(n____(X1, X2)) -> __(X1, X2)
           , activate(n__a()) -> a()
           , activate(n__e()) -> e()
           , activate(n__i()) -> i()
           , activate(n__o()) -> o()
           , activate(n__u()) -> u()
           , activate(X) -> X}
        Weak Trs:
          {  U22(tt()) -> tt()
           , U11(tt()) -> tt()
           , U31(tt()) -> tt()
           , U42(tt()) -> tt()
           , U52(tt()) -> tt()
           , U61(tt()) -> tt()
           , U72(tt()) -> tt()
           , U81(tt()) -> tt()}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {nil() -> n__nil()}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
            Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
            Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
            Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
            Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
            Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
            Uargs(isQid) = {1}, Uargs(isNePal) = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
           nil() = [2]
                   [0]
           U11(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           tt() = [0]
                  [0]
           U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           U22(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           isList(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
           activate(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
           U31(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           U42(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           isNeList(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
           U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           U52(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           U61(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           U72(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           isPal(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
           U81(x1) = [1 0] x1 + [1]
                     [0 0]      [0]
           n__nil() = [0]
                      [0]
           n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                           [0 0]      [0 0]      [0]
           isQid(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
           isNePal(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
           n__a() = [0]
                    [0]
           n__e() = [0]
                    [0]
           n__i() = [0]
                    [0]
           n__o() = [0]
                    [0]
           n__u() = [0]
                    [0]
           a() = [0]
                 [0]
           e() = [0]
                 [0]
           i() = [0]
                 [0]
           o() = [0]
                 [0]
           u() = [0]
                 [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  U21(tt(), V2) -> U22(isList(activate(V2)))
             , U41(tt(), V2) -> U42(isNeList(activate(V2)))
             , U51(tt(), V2) -> U52(isList(activate(V2)))
             , U71(tt(), P) -> U72(isPal(activate(P)))
             , isList(V) -> U11(isNeList(activate(V)))
             , isList(n__nil()) -> tt()
             , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
             , isNeList(V) -> U31(isQid(activate(V)))
             , isNeList(n____(V1, V2)) ->
               U41(isList(activate(V1)), activate(V2))
             , isNeList(n____(V1, V2)) ->
               U51(isNeList(activate(V1)), activate(V2))
             , isNePal(V) -> U61(isQid(activate(V)))
             , isPal(V) -> U81(isNePal(activate(V)))
             , isPal(n__nil()) -> tt()
             , isQid(n__a()) -> tt()
             , isQid(n__e()) -> tt()
             , isQid(n__i()) -> tt()
             , isQid(n__o()) -> tt()
             , isQid(n__u()) -> tt()
             , __(X1, X2) -> n____(X1, X2)
             , a() -> n__a()
             , e() -> n__e()
             , i() -> n__i()
             , o() -> n__o()
             , u() -> n__u()
             , activate(n__nil()) -> nil()
             , activate(n____(X1, X2)) -> __(X1, X2)
             , activate(n__a()) -> a()
             , activate(n__e()) -> e()
             , activate(n__i()) -> i()
             , activate(n__o()) -> o()
             , activate(n__u()) -> u()
             , activate(X) -> X}
          Weak Trs:
            {  nil() -> n__nil()
             , U22(tt()) -> tt()
             , U11(tt()) -> tt()
             , U31(tt()) -> tt()
             , U42(tt()) -> tt()
             , U52(tt()) -> tt()
             , U61(tt()) -> tt()
             , U72(tt()) -> tt()
             , U81(tt()) -> tt()}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {__(X1, X2) -> n____(X1, X2)}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
              Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
              Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
              Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
              Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
              Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
              Uargs(isQid) = {1}, Uargs(isNePal) = {1}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             __(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                          [0 0]      [0 0]      [0]
             nil() = [0]
                     [0]
             U11(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             tt() = [0]
                    [0]
             U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                           [0 0]      [0 0]      [1]
             U22(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             isList(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
             activate(x1) = [1 0] x1 + [0]
                            [0 0]      [1]
             U31(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                           [0 0]      [0 0]      [1]
             U42(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             isNeList(x1) = [1 0] x1 + [0]
                            [0 0]      [1]
             U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                           [0 0]      [0 0]      [1]
             U52(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             U61(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                           [0 0]      [0 0]      [1]
             U72(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             isPal(x1) = [1 0] x1 + [0]
                         [0 0]      [1]
             U81(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             n__nil() = [0]
                        [0]
             n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                             [0 0]      [0 0]      [0]
             isQid(x1) = [1 0] x1 + [0]
                         [0 0]      [1]
             isNePal(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
             n__a() = [0]
                      [0]
             n__e() = [0]
                      [0]
             n__i() = [0]
                      [0]
             n__o() = [0]
                      [0]
             n__u() = [0]
                      [0]
             a() = [0]
                   [0]
             e() = [0]
                   [0]
             i() = [0]
                   [0]
             o() = [0]
                   [0]
             u() = [0]
                   [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  U21(tt(), V2) -> U22(isList(activate(V2)))
               , U41(tt(), V2) -> U42(isNeList(activate(V2)))
               , U51(tt(), V2) -> U52(isList(activate(V2)))
               , U71(tt(), P) -> U72(isPal(activate(P)))
               , isList(V) -> U11(isNeList(activate(V)))
               , isList(n__nil()) -> tt()
               , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
               , isNeList(V) -> U31(isQid(activate(V)))
               , isNeList(n____(V1, V2)) ->
                 U41(isList(activate(V1)), activate(V2))
               , isNeList(n____(V1, V2)) ->
                 U51(isNeList(activate(V1)), activate(V2))
               , isNePal(V) -> U61(isQid(activate(V)))
               , isPal(V) -> U81(isNePal(activate(V)))
               , isPal(n__nil()) -> tt()
               , isQid(n__a()) -> tt()
               , isQid(n__e()) -> tt()
               , isQid(n__i()) -> tt()
               , isQid(n__o()) -> tt()
               , isQid(n__u()) -> tt()
               , a() -> n__a()
               , e() -> n__e()
               , i() -> n__i()
               , o() -> n__o()
               , u() -> n__u()
               , activate(n__nil()) -> nil()
               , activate(n____(X1, X2)) -> __(X1, X2)
               , activate(n__a()) -> a()
               , activate(n__e()) -> e()
               , activate(n__i()) -> i()
               , activate(n__o()) -> o()
               , activate(n__u()) -> u()
               , activate(X) -> X}
            Weak Trs:
              {  __(X1, X2) -> n____(X1, X2)
               , nil() -> n__nil()
               , U22(tt()) -> tt()
               , U11(tt()) -> tt()
               , U31(tt()) -> tt()
               , U42(tt()) -> tt()
               , U52(tt()) -> tt()
               , U61(tt()) -> tt()
               , U72(tt()) -> tt()
               , U81(tt()) -> tt()}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {a() -> n__a()}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                Uargs(isQid) = {1}, Uargs(isNePal) = {1}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
               nil() = [0]
                       [0]
               U11(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               tt() = [0]
                      [0]
               U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 0]      [1]
               U22(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               isList(x1) = [1 0] x1 + [0]
                            [0 0]      [1]
               activate(x1) = [1 0] x1 + [0]
                              [0 0]      [1]
               U31(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 0]      [1]
               U42(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               isNeList(x1) = [1 0] x1 + [0]
                              [0 0]      [1]
               U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 0]      [1]
               U52(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               U61(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 0]      [1]
               U72(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               isPal(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
               U81(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               n__nil() = [0]
                          [0]
               n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 0]      [0]
               isQid(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
               isNePal(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
               n__a() = [0]
                        [0]
               n__e() = [0]
                        [0]
               n__i() = [0]
                        [0]
               n__o() = [0]
                        [0]
               n__u() = [0]
                        [0]
               a() = [2]
                     [0]
               e() = [0]
                     [0]
               i() = [0]
                     [0]
               o() = [0]
                     [0]
               u() = [0]
                     [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  U21(tt(), V2) -> U22(isList(activate(V2)))
                 , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                 , U51(tt(), V2) -> U52(isList(activate(V2)))
                 , U71(tt(), P) -> U72(isPal(activate(P)))
                 , isList(V) -> U11(isNeList(activate(V)))
                 , isList(n__nil()) -> tt()
                 , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                 , isNeList(V) -> U31(isQid(activate(V)))
                 , isNeList(n____(V1, V2)) ->
                   U41(isList(activate(V1)), activate(V2))
                 , isNeList(n____(V1, V2)) ->
                   U51(isNeList(activate(V1)), activate(V2))
                 , isNePal(V) -> U61(isQid(activate(V)))
                 , isPal(V) -> U81(isNePal(activate(V)))
                 , isPal(n__nil()) -> tt()
                 , isQid(n__a()) -> tt()
                 , isQid(n__e()) -> tt()
                 , isQid(n__i()) -> tt()
                 , isQid(n__o()) -> tt()
                 , isQid(n__u()) -> tt()
                 , e() -> n__e()
                 , i() -> n__i()
                 , o() -> n__o()
                 , u() -> n__u()
                 , activate(n__nil()) -> nil()
                 , activate(n____(X1, X2)) -> __(X1, X2)
                 , activate(n__a()) -> a()
                 , activate(n__e()) -> e()
                 , activate(n__i()) -> i()
                 , activate(n__o()) -> o()
                 , activate(n__u()) -> u()
                 , activate(X) -> X}
              Weak Trs:
                {  a() -> n__a()
                 , __(X1, X2) -> n____(X1, X2)
                 , nil() -> n__nil()
                 , U22(tt()) -> tt()
                 , U11(tt()) -> tt()
                 , U31(tt()) -> tt()
                 , U42(tt()) -> tt()
                 , U52(tt()) -> tt()
                 , U61(tt()) -> tt()
                 , U72(tt()) -> tt()
                 , U81(tt()) -> tt()}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {e() -> n__e()}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                  Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                  Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                  Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                  Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                  Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                  Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                 nil() = [0]
                         [0]
                 U11(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 tt() = [0]
                        [0]
                 U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                               [0 0]      [0 0]      [1]
                 U22(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 isList(x1) = [1 0] x1 + [0]
                              [0 0]      [1]
                 activate(x1) = [1 0] x1 + [0]
                                [0 0]      [1]
                 U31(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                               [0 0]      [0 0]      [1]
                 U42(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 isNeList(x1) = [1 0] x1 + [0]
                                [0 0]      [1]
                 U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                               [0 0]      [0 0]      [1]
                 U52(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 U61(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                               [0 0]      [0 0]      [1]
                 U72(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 isPal(x1) = [1 0] x1 + [0]
                             [0 0]      [1]
                 U81(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 n__nil() = [0]
                            [0]
                 n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                 isQid(x1) = [1 0] x1 + [0]
                             [0 0]      [1]
                 isNePal(x1) = [1 0] x1 + [0]
                               [0 0]      [0]
                 n__a() = [0]
                          [0]
                 n__e() = [0]
                          [0]
                 n__i() = [0]
                          [0]
                 n__o() = [0]
                          [0]
                 n__u() = [0]
                          [0]
                 a() = [0]
                       [0]
                 e() = [2]
                       [0]
                 i() = [0]
                       [0]
                 o() = [0]
                       [0]
                 u() = [0]
                       [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  U21(tt(), V2) -> U22(isList(activate(V2)))
                   , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                   , U51(tt(), V2) -> U52(isList(activate(V2)))
                   , U71(tt(), P) -> U72(isPal(activate(P)))
                   , isList(V) -> U11(isNeList(activate(V)))
                   , isList(n__nil()) -> tt()
                   , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                   , isNeList(V) -> U31(isQid(activate(V)))
                   , isNeList(n____(V1, V2)) ->
                     U41(isList(activate(V1)), activate(V2))
                   , isNeList(n____(V1, V2)) ->
                     U51(isNeList(activate(V1)), activate(V2))
                   , isNePal(V) -> U61(isQid(activate(V)))
                   , isPal(V) -> U81(isNePal(activate(V)))
                   , isPal(n__nil()) -> tt()
                   , isQid(n__a()) -> tt()
                   , isQid(n__e()) -> tt()
                   , isQid(n__i()) -> tt()
                   , isQid(n__o()) -> tt()
                   , isQid(n__u()) -> tt()
                   , i() -> n__i()
                   , o() -> n__o()
                   , u() -> n__u()
                   , activate(n__nil()) -> nil()
                   , activate(n____(X1, X2)) -> __(X1, X2)
                   , activate(n__a()) -> a()
                   , activate(n__e()) -> e()
                   , activate(n__i()) -> i()
                   , activate(n__o()) -> o()
                   , activate(n__u()) -> u()
                   , activate(X) -> X}
                Weak Trs:
                  {  e() -> n__e()
                   , a() -> n__a()
                   , __(X1, X2) -> n____(X1, X2)
                   , nil() -> n__nil()
                   , U22(tt()) -> tt()
                   , U11(tt()) -> tt()
                   , U31(tt()) -> tt()
                   , U42(tt()) -> tt()
                   , U52(tt()) -> tt()
                   , U61(tt()) -> tt()
                   , U72(tt()) -> tt()
                   , U81(tt()) -> tt()}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {i() -> n__i()}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                    Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                    Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                    Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                    Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                    Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                    Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                   nil() = [0]
                           [0]
                   U11(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   tt() = [0]
                          [0]
                   U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                 [0 0]      [0 0]      [1]
                   U22(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   isList(x1) = [1 0] x1 + [0]
                                [0 0]      [1]
                   activate(x1) = [1 0] x1 + [0]
                                  [0 0]      [1]
                   U31(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                 [0 0]      [0 0]      [1]
                   U42(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   isNeList(x1) = [1 0] x1 + [0]
                                  [0 0]      [1]
                   U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                 [0 0]      [0 0]      [1]
                   U52(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   U61(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                 [0 0]      [0 0]      [1]
                   U72(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   isPal(x1) = [1 0] x1 + [0]
                               [0 0]      [1]
                   U81(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   n__nil() = [0]
                              [0]
                   n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                   isQid(x1) = [1 0] x1 + [0]
                               [0 0]      [1]
                   isNePal(x1) = [1 0] x1 + [0]
                                 [0 0]      [0]
                   n__a() = [0]
                            [0]
                   n__e() = [0]
                            [0]
                   n__i() = [0]
                            [0]
                   n__o() = [0]
                            [0]
                   n__u() = [0]
                            [0]
                   a() = [0]
                         [0]
                   e() = [0]
                         [0]
                   i() = [2]
                         [0]
                   o() = [0]
                         [0]
                   u() = [0]
                         [0]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  U21(tt(), V2) -> U22(isList(activate(V2)))
                     , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                     , U51(tt(), V2) -> U52(isList(activate(V2)))
                     , U71(tt(), P) -> U72(isPal(activate(P)))
                     , isList(V) -> U11(isNeList(activate(V)))
                     , isList(n__nil()) -> tt()
                     , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                     , isNeList(V) -> U31(isQid(activate(V)))
                     , isNeList(n____(V1, V2)) ->
                       U41(isList(activate(V1)), activate(V2))
                     , isNeList(n____(V1, V2)) ->
                       U51(isNeList(activate(V1)), activate(V2))
                     , isNePal(V) -> U61(isQid(activate(V)))
                     , isPal(V) -> U81(isNePal(activate(V)))
                     , isPal(n__nil()) -> tt()
                     , isQid(n__a()) -> tt()
                     , isQid(n__e()) -> tt()
                     , isQid(n__i()) -> tt()
                     , isQid(n__o()) -> tt()
                     , isQid(n__u()) -> tt()
                     , o() -> n__o()
                     , u() -> n__u()
                     , activate(n__nil()) -> nil()
                     , activate(n____(X1, X2)) -> __(X1, X2)
                     , activate(n__a()) -> a()
                     , activate(n__e()) -> e()
                     , activate(n__i()) -> i()
                     , activate(n__o()) -> o()
                     , activate(n__u()) -> u()
                     , activate(X) -> X}
                  Weak Trs:
                    {  i() -> n__i()
                     , e() -> n__e()
                     , a() -> n__a()
                     , __(X1, X2) -> n____(X1, X2)
                     , nil() -> n__nil()
                     , U22(tt()) -> tt()
                     , U11(tt()) -> tt()
                     , U31(tt()) -> tt()
                     , U42(tt()) -> tt()
                     , U52(tt()) -> tt()
                     , U61(tt()) -> tt()
                     , U72(tt()) -> tt()
                     , U81(tt()) -> tt()}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {isQid(n__a()) -> tt()}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                      Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                      Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                      Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                      Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                      Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                      Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                     nil() = [0]
                             [0]
                     U11(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     tt() = [0]
                            [0]
                     U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 0]      [0 0]      [1]
                     U22(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     isList(x1) = [1 0] x1 + [0]
                                  [0 0]      [1]
                     activate(x1) = [1 0] x1 + [0]
                                    [0 0]      [1]
                     U31(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 0]      [0 0]      [1]
                     U42(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     isNeList(x1) = [1 0] x1 + [0]
                                    [0 0]      [1]
                     U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                   [0 0]      [0 0]      [1]
                     U52(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     U61(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                   [0 0]      [0 0]      [1]
                     U72(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     isPal(x1) = [1 0] x1 + [0]
                                 [0 0]      [1]
                     U81(x1) = [1 0] x1 + [1]
                               [0 0]      [1]
                     n__nil() = [0]
                                [0]
                     n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                     isQid(x1) = [1 0] x1 + [0]
                                 [0 0]      [1]
                     isNePal(x1) = [1 0] x1 + [0]
                                   [0 0]      [0]
                     n__a() = [1]
                              [0]
                     n__e() = [0]
                              [0]
                     n__i() = [0]
                              [0]
                     n__o() = [0]
                              [0]
                     n__u() = [0]
                              [0]
                     a() = [2]
                           [0]
                     e() = [0]
                           [0]
                     i() = [0]
                           [0]
                     o() = [0]
                           [0]
                     u() = [0]
                           [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  U21(tt(), V2) -> U22(isList(activate(V2)))
                       , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                       , U51(tt(), V2) -> U52(isList(activate(V2)))
                       , U71(tt(), P) -> U72(isPal(activate(P)))
                       , isList(V) -> U11(isNeList(activate(V)))
                       , isList(n__nil()) -> tt()
                       , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                       , isNeList(V) -> U31(isQid(activate(V)))
                       , isNeList(n____(V1, V2)) ->
                         U41(isList(activate(V1)), activate(V2))
                       , isNeList(n____(V1, V2)) ->
                         U51(isNeList(activate(V1)), activate(V2))
                       , isNePal(V) -> U61(isQid(activate(V)))
                       , isPal(V) -> U81(isNePal(activate(V)))
                       , isPal(n__nil()) -> tt()
                       , isQid(n__e()) -> tt()
                       , isQid(n__i()) -> tt()
                       , isQid(n__o()) -> tt()
                       , isQid(n__u()) -> tt()
                       , o() -> n__o()
                       , u() -> n__u()
                       , activate(n__nil()) -> nil()
                       , activate(n____(X1, X2)) -> __(X1, X2)
                       , activate(n__a()) -> a()
                       , activate(n__e()) -> e()
                       , activate(n__i()) -> i()
                       , activate(n__o()) -> o()
                       , activate(n__u()) -> u()
                       , activate(X) -> X}
                    Weak Trs:
                      {  isQid(n__a()) -> tt()
                       , i() -> n__i()
                       , e() -> n__e()
                       , a() -> n__a()
                       , __(X1, X2) -> n____(X1, X2)
                       , nil() -> n__nil()
                       , U22(tt()) -> tt()
                       , U11(tt()) -> tt()
                       , U31(tt()) -> tt()
                       , U42(tt()) -> tt()
                       , U52(tt()) -> tt()
                       , U61(tt()) -> tt()
                       , U72(tt()) -> tt()
                       , U81(tt()) -> tt()}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    The weightgap principle applies, where following rules are oriented strictly:
                    
                    TRS Component: {o() -> n__o()}
                    
                    Interpretation of nonconstant growth:
                    -------------------------------------
                      The following argument positions are usable:
                        Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                        Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                        Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                        Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                        Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                        Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                        Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                      Interpretation Functions:
                       __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                       nil() = [0]
                               [0]
                       U11(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       tt() = [0]
                              [0]
                       U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                     [0 0]      [0 0]      [1]
                       U22(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       isList(x1) = [1 0] x1 + [0]
                                    [0 0]      [1]
                       activate(x1) = [1 0] x1 + [0]
                                      [0 0]      [1]
                       U31(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                     [0 0]      [0 0]      [1]
                       U42(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       isNeList(x1) = [1 0] x1 + [0]
                                      [0 0]      [1]
                       U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                     [0 0]      [0 0]      [1]
                       U52(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       U61(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                     [0 0]      [0 0]      [1]
                       U72(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       isPal(x1) = [1 0] x1 + [0]
                                   [0 0]      [1]
                       U81(x1) = [1 0] x1 + [1]
                                 [0 0]      [1]
                       n__nil() = [0]
                                  [0]
                       n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                       [0 0]      [0 0]      [0]
                       isQid(x1) = [1 0] x1 + [0]
                                   [0 0]      [1]
                       isNePal(x1) = [1 0] x1 + [0]
                                     [0 0]      [0]
                       n__a() = [0]
                                [0]
                       n__e() = [0]
                                [0]
                       n__i() = [0]
                                [0]
                       n__o() = [0]
                                [0]
                       n__u() = [0]
                                [0]
                       a() = [0]
                             [0]
                       e() = [0]
                             [0]
                       i() = [0]
                             [0]
                       o() = [2]
                             [0]
                       u() = [0]
                             [0]
                    
                    The strictly oriented rules are moved into the weak component.
                    
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  U21(tt(), V2) -> U22(isList(activate(V2)))
                         , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                         , U51(tt(), V2) -> U52(isList(activate(V2)))
                         , U71(tt(), P) -> U72(isPal(activate(P)))
                         , isList(V) -> U11(isNeList(activate(V)))
                         , isList(n__nil()) -> tt()
                         , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                         , isNeList(V) -> U31(isQid(activate(V)))
                         , isNeList(n____(V1, V2)) ->
                           U41(isList(activate(V1)), activate(V2))
                         , isNeList(n____(V1, V2)) ->
                           U51(isNeList(activate(V1)), activate(V2))
                         , isNePal(V) -> U61(isQid(activate(V)))
                         , isPal(V) -> U81(isNePal(activate(V)))
                         , isPal(n__nil()) -> tt()
                         , isQid(n__e()) -> tt()
                         , isQid(n__i()) -> tt()
                         , isQid(n__o()) -> tt()
                         , isQid(n__u()) -> tt()
                         , u() -> n__u()
                         , activate(n__nil()) -> nil()
                         , activate(n____(X1, X2)) -> __(X1, X2)
                         , activate(n__a()) -> a()
                         , activate(n__e()) -> e()
                         , activate(n__i()) -> i()
                         , activate(n__o()) -> o()
                         , activate(n__u()) -> u()
                         , activate(X) -> X}
                      Weak Trs:
                        {  o() -> n__o()
                         , isQid(n__a()) -> tt()
                         , i() -> n__i()
                         , e() -> n__e()
                         , a() -> n__a()
                         , __(X1, X2) -> n____(X1, X2)
                         , nil() -> n__nil()
                         , U22(tt()) -> tt()
                         , U11(tt()) -> tt()
                         , U31(tt()) -> tt()
                         , U42(tt()) -> tt()
                         , U52(tt()) -> tt()
                         , U61(tt()) -> tt()
                         , U72(tt()) -> tt()
                         , U81(tt()) -> tt()}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      The weightgap principle applies, where following rules are oriented strictly:
                      
                      TRS Component: {u() -> n__u()}
                      
                      Interpretation of nonconstant growth:
                      -------------------------------------
                        The following argument positions are usable:
                          Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                          Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                          Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                          Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                          Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                          Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                          Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                        Interpretation Functions:
                         __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                         nil() = [0]
                                 [0]
                         U11(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         tt() = [0]
                                [0]
                         U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 0]      [0 0]      [1]
                         U22(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         isList(x1) = [1 0] x1 + [0]
                                      [0 0]      [1]
                         activate(x1) = [1 0] x1 + [0]
                                        [0 0]      [1]
                         U31(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 0]      [0 0]      [1]
                         U42(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         isNeList(x1) = [1 0] x1 + [0]
                                        [0 0]      [1]
                         U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                       [0 0]      [0 0]      [1]
                         U52(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         U61(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                       [0 0]      [0 0]      [1]
                         U72(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         isPal(x1) = [1 0] x1 + [0]
                                     [0 0]      [1]
                         U81(x1) = [1 0] x1 + [1]
                                   [0 0]      [1]
                         n__nil() = [0]
                                    [0]
                         n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                         isQid(x1) = [1 0] x1 + [0]
                                     [0 0]      [1]
                         isNePal(x1) = [1 0] x1 + [0]
                                       [0 0]      [0]
                         n__a() = [0]
                                  [0]
                         n__e() = [0]
                                  [0]
                         n__i() = [0]
                                  [0]
                         n__o() = [0]
                                  [0]
                         n__u() = [0]
                                  [0]
                         a() = [0]
                               [0]
                         e() = [0]
                               [0]
                         i() = [0]
                               [0]
                         o() = [0]
                               [0]
                         u() = [2]
                               [0]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  U21(tt(), V2) -> U22(isList(activate(V2)))
                           , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                           , U51(tt(), V2) -> U52(isList(activate(V2)))
                           , U71(tt(), P) -> U72(isPal(activate(P)))
                           , isList(V) -> U11(isNeList(activate(V)))
                           , isList(n__nil()) -> tt()
                           , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                           , isNeList(V) -> U31(isQid(activate(V)))
                           , isNeList(n____(V1, V2)) ->
                             U41(isList(activate(V1)), activate(V2))
                           , isNeList(n____(V1, V2)) ->
                             U51(isNeList(activate(V1)), activate(V2))
                           , isNePal(V) -> U61(isQid(activate(V)))
                           , isPal(V) -> U81(isNePal(activate(V)))
                           , isPal(n__nil()) -> tt()
                           , isQid(n__e()) -> tt()
                           , isQid(n__i()) -> tt()
                           , isQid(n__o()) -> tt()
                           , isQid(n__u()) -> tt()
                           , activate(n__nil()) -> nil()
                           , activate(n____(X1, X2)) -> __(X1, X2)
                           , activate(n__a()) -> a()
                           , activate(n__e()) -> e()
                           , activate(n__i()) -> i()
                           , activate(n__o()) -> o()
                           , activate(n__u()) -> u()
                           , activate(X) -> X}
                        Weak Trs:
                          {  u() -> n__u()
                           , o() -> n__o()
                           , isQid(n__a()) -> tt()
                           , i() -> n__i()
                           , e() -> n__e()
                           , a() -> n__a()
                           , __(X1, X2) -> n____(X1, X2)
                           , nil() -> n__nil()
                           , U22(tt()) -> tt()
                           , U11(tt()) -> tt()
                           , U31(tt()) -> tt()
                           , U42(tt()) -> tt()
                           , U52(tt()) -> tt()
                           , U61(tt()) -> tt()
                           , U72(tt()) -> tt()
                           , U81(tt()) -> tt()}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        The weightgap principle applies, where following rules are oriented strictly:
                        
                        TRS Component: {isQid(n__u()) -> tt()}
                        
                        Interpretation of nonconstant growth:
                        -------------------------------------
                          The following argument positions are usable:
                            Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                            Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                            Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                            Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                            Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                            Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                            Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                          Interpretation Functions:
                           __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                           nil() = [0]
                                   [0]
                           U11(x1) = [1 0] x1 + [1]
                                     [0 0]      [1]
                           tt() = [0]
                                  [0]
                           U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                         [0 0]      [0 0]      [1]
                           U22(x1) = [1 1] x1 + [0]
                                     [0 0]      [1]
                           isList(x1) = [1 0] x1 + [0]
                                        [0 0]      [1]
                           activate(x1) = [1 0] x1 + [0]
                                          [0 0]      [1]
                           U31(x1) = [1 0] x1 + [1]
                                     [0 0]      [1]
                           U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                         [0 0]      [0 0]      [1]
                           U42(x1) = [1 0] x1 + [1]
                                     [0 0]      [1]
                           isNeList(x1) = [1 0] x1 + [0]
                                          [0 0]      [1]
                           U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                         [0 0]      [0 0]      [1]
                           U52(x1) = [1 0] x1 + [1]
                                     [0 0]      [1]
                           U61(x1) = [1 0] x1 + [1]
                                     [0 0]      [1]
                           U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                         [0 0]      [0 0]      [1]
                           U72(x1) = [1 0] x1 + [1]
                                     [0 0]      [1]
                           isPal(x1) = [1 0] x1 + [0]
                                       [0 0]      [1]
                           U81(x1) = [1 0] x1 + [1]
                                     [0 0]      [1]
                           n__nil() = [0]
                                      [0]
                           n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                           isQid(x1) = [1 0] x1 + [0]
                                       [0 0]      [1]
                           isNePal(x1) = [1 0] x1 + [0]
                                         [0 0]      [0]
                           n__a() = [0]
                                    [0]
                           n__e() = [0]
                                    [0]
                           n__i() = [0]
                                    [0]
                           n__o() = [0]
                                    [0]
                           n__u() = [2]
                                    [0]
                           a() = [0]
                                 [0]
                           e() = [0]
                                 [0]
                           i() = [0]
                                 [0]
                           o() = [0]
                                 [0]
                           u() = [2]
                                 [0]
                        
                        The strictly oriented rules are moved into the weak component.
                        
                        We consider the following Problem:
                        
                          Strict Trs:
                            {  U21(tt(), V2) -> U22(isList(activate(V2)))
                             , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                             , U51(tt(), V2) -> U52(isList(activate(V2)))
                             , U71(tt(), P) -> U72(isPal(activate(P)))
                             , isList(V) -> U11(isNeList(activate(V)))
                             , isList(n__nil()) -> tt()
                             , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                             , isNeList(V) -> U31(isQid(activate(V)))
                             , isNeList(n____(V1, V2)) ->
                               U41(isList(activate(V1)), activate(V2))
                             , isNeList(n____(V1, V2)) ->
                               U51(isNeList(activate(V1)), activate(V2))
                             , isNePal(V) -> U61(isQid(activate(V)))
                             , isPal(V) -> U81(isNePal(activate(V)))
                             , isPal(n__nil()) -> tt()
                             , isQid(n__e()) -> tt()
                             , isQid(n__i()) -> tt()
                             , isQid(n__o()) -> tt()
                             , activate(n__nil()) -> nil()
                             , activate(n____(X1, X2)) -> __(X1, X2)
                             , activate(n__a()) -> a()
                             , activate(n__e()) -> e()
                             , activate(n__i()) -> i()
                             , activate(n__o()) -> o()
                             , activate(n__u()) -> u()
                             , activate(X) -> X}
                          Weak Trs:
                            {  isQid(n__u()) -> tt()
                             , u() -> n__u()
                             , o() -> n__o()
                             , isQid(n__a()) -> tt()
                             , i() -> n__i()
                             , e() -> n__e()
                             , a() -> n__a()
                             , __(X1, X2) -> n____(X1, X2)
                             , nil() -> n__nil()
                             , U22(tt()) -> tt()
                             , U11(tt()) -> tt()
                             , U31(tt()) -> tt()
                             , U42(tt()) -> tt()
                             , U52(tt()) -> tt()
                             , U61(tt()) -> tt()
                             , U72(tt()) -> tt()
                             , U81(tt()) -> tt()}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          The weightgap principle applies, where following rules are oriented strictly:
                          
                          TRS Component: {U21(tt(), V2) -> U22(isList(activate(V2)))}
                          
                          Interpretation of nonconstant growth:
                          -------------------------------------
                            The following argument positions are usable:
                              Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                              Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                              Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                              Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                              Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                              Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                              Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                            Interpretation Functions:
                             __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                          [0 0]      [0 0]      [0]
                             nil() = [0]
                                     [0]
                             U11(x1) = [1 0] x1 + [1]
                                       [0 0]      [1]
                             tt() = [0]
                                    [0]
                             U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                           [0 0]      [0 0]      [1]
                             U22(x1) = [1 0] x1 + [0]
                                       [0 0]      [1]
                             isList(x1) = [1 0] x1 + [0]
                                          [0 0]      [1]
                             activate(x1) = [1 0] x1 + [0]
                                            [0 0]      [1]
                             U31(x1) = [1 0] x1 + [1]
                                       [0 0]      [1]
                             U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                           [0 0]      [0 0]      [1]
                             U42(x1) = [1 0] x1 + [1]
                                       [0 0]      [1]
                             isNeList(x1) = [1 0] x1 + [0]
                                            [0 0]      [1]
                             U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                           [0 0]      [0 0]      [1]
                             U52(x1) = [1 0] x1 + [1]
                                       [0 0]      [1]
                             U61(x1) = [1 0] x1 + [1]
                                       [0 0]      [1]
                             U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                           [0 0]      [0 0]      [1]
                             U72(x1) = [1 0] x1 + [1]
                                       [0 0]      [1]
                             isPal(x1) = [1 0] x1 + [0]
                                         [0 0]      [1]
                             U81(x1) = [1 0] x1 + [1]
                                       [0 0]      [1]
                             n__nil() = [0]
                                        [0]
                             n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                             [0 0]      [0 0]      [0]
                             isQid(x1) = [1 0] x1 + [0]
                                         [0 0]      [1]
                             isNePal(x1) = [1 0] x1 + [0]
                                           [0 0]      [0]
                             n__a() = [0]
                                      [0]
                             n__e() = [0]
                                      [0]
                             n__i() = [0]
                                      [0]
                             n__o() = [0]
                                      [0]
                             n__u() = [0]
                                      [0]
                             a() = [0]
                                   [0]
                             e() = [0]
                                   [0]
                             i() = [0]
                                   [0]
                             o() = [0]
                                   [0]
                             u() = [0]
                                   [0]
                          
                          The strictly oriented rules are moved into the weak component.
                          
                          We consider the following Problem:
                          
                            Strict Trs:
                              {  U41(tt(), V2) -> U42(isNeList(activate(V2)))
                               , U51(tt(), V2) -> U52(isList(activate(V2)))
                               , U71(tt(), P) -> U72(isPal(activate(P)))
                               , isList(V) -> U11(isNeList(activate(V)))
                               , isList(n__nil()) -> tt()
                               , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                               , isNeList(V) -> U31(isQid(activate(V)))
                               , isNeList(n____(V1, V2)) ->
                                 U41(isList(activate(V1)), activate(V2))
                               , isNeList(n____(V1, V2)) ->
                                 U51(isNeList(activate(V1)), activate(V2))
                               , isNePal(V) -> U61(isQid(activate(V)))
                               , isPal(V) -> U81(isNePal(activate(V)))
                               , isPal(n__nil()) -> tt()
                               , isQid(n__e()) -> tt()
                               , isQid(n__i()) -> tt()
                               , isQid(n__o()) -> tt()
                               , activate(n__nil()) -> nil()
                               , activate(n____(X1, X2)) -> __(X1, X2)
                               , activate(n__a()) -> a()
                               , activate(n__e()) -> e()
                               , activate(n__i()) -> i()
                               , activate(n__o()) -> o()
                               , activate(n__u()) -> u()
                               , activate(X) -> X}
                            Weak Trs:
                              {  U21(tt(), V2) -> U22(isList(activate(V2)))
                               , isQid(n__u()) -> tt()
                               , u() -> n__u()
                               , o() -> n__o()
                               , isQid(n__a()) -> tt()
                               , i() -> n__i()
                               , e() -> n__e()
                               , a() -> n__a()
                               , __(X1, X2) -> n____(X1, X2)
                               , nil() -> n__nil()
                               , U22(tt()) -> tt()
                               , U11(tt()) -> tt()
                               , U31(tt()) -> tt()
                               , U42(tt()) -> tt()
                               , U52(tt()) -> tt()
                               , U61(tt()) -> tt()
                               , U72(tt()) -> tt()
                               , U81(tt()) -> tt()}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(?,O(n^1))
                          
                          Proof:
                            The weightgap principle applies, where following rules are oriented strictly:
                            
                            TRS Component: {isQid(n__o()) -> tt()}
                            
                            Interpretation of nonconstant growth:
                            -------------------------------------
                              The following argument positions are usable:
                                Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                                Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                                Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                                Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                              Interpretation Functions:
                               __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                            [0 1]      [0 0]      [0]
                               nil() = [0]
                                       [0]
                               U11(x1) = [1 0] x1 + [1]
                                         [0 0]      [1]
                               tt() = [0]
                                      [0]
                               U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                             [0 0]      [0 0]      [1]
                               U22(x1) = [1 0] x1 + [1]
                                         [0 0]      [1]
                               isList(x1) = [1 0] x1 + [0]
                                            [0 0]      [1]
                               activate(x1) = [1 0] x1 + [0]
                                              [0 0]      [2]
                               U31(x1) = [1 0] x1 + [1]
                                         [0 0]      [1]
                               U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                             [0 0]      [0 0]      [1]
                               U42(x1) = [1 1] x1 + [0]
                                         [0 0]      [1]
                               isNeList(x1) = [1 0] x1 + [0]
                                              [0 0]      [1]
                               U51(x1, x2) = [1 0] x1 + [1 2] x2 + [1]
                                             [0 0]      [0 0]      [1]
                               U52(x1) = [1 0] x1 + [1]
                                         [0 0]      [1]
                               U61(x1) = [1 0] x1 + [1]
                                         [0 0]      [1]
                               U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                             [0 0]      [0 0]      [1]
                               U72(x1) = [1 0] x1 + [1]
                                         [0 0]      [1]
                               isPal(x1) = [1 0] x1 + [0]
                                           [0 0]      [1]
                               U81(x1) = [1 0] x1 + [1]
                                         [0 0]      [1]
                               n__nil() = [0]
                                          [0]
                               n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                               [0 0]      [0 0]      [0]
                               isQid(x1) = [1 0] x1 + [0]
                                           [0 1]      [1]
                               isNePal(x1) = [1 0] x1 + [0]
                                             [0 0]      [0]
                               n__a() = [0]
                                        [0]
                               n__e() = [0]
                                        [0]
                               n__i() = [0]
                                        [0]
                               n__o() = [2]
                                        [1]
                               n__u() = [0]
                                        [0]
                               a() = [0]
                                     [0]
                               e() = [0]
                                     [0]
                               i() = [0]
                                     [0]
                               o() = [2]
                                     [2]
                               u() = [0]
                                     [0]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Strict Trs:
                                {  U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                 , U51(tt(), V2) -> U52(isList(activate(V2)))
                                 , U71(tt(), P) -> U72(isPal(activate(P)))
                                 , isList(V) -> U11(isNeList(activate(V)))
                                 , isList(n__nil()) -> tt()
                                 , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
                                 , isNeList(V) -> U31(isQid(activate(V)))
                                 , isNeList(n____(V1, V2)) ->
                                   U41(isList(activate(V1)), activate(V2))
                                 , isNeList(n____(V1, V2)) ->
                                   U51(isNeList(activate(V1)), activate(V2))
                                 , isNePal(V) -> U61(isQid(activate(V)))
                                 , isPal(V) -> U81(isNePal(activate(V)))
                                 , isPal(n__nil()) -> tt()
                                 , isQid(n__e()) -> tt()
                                 , isQid(n__i()) -> tt()
                                 , activate(n__nil()) -> nil()
                                 , activate(n____(X1, X2)) -> __(X1, X2)
                                 , activate(n__a()) -> a()
                                 , activate(n__e()) -> e()
                                 , activate(n__i()) -> i()
                                 , activate(n__o()) -> o()
                                 , activate(n__u()) -> u()
                                 , activate(X) -> X}
                              Weak Trs:
                                {  isQid(n__o()) -> tt()
                                 , U21(tt(), V2) -> U22(isList(activate(V2)))
                                 , isQid(n__u()) -> tt()
                                 , u() -> n__u()
                                 , o() -> n__o()
                                 , isQid(n__a()) -> tt()
                                 , i() -> n__i()
                                 , e() -> n__e()
                                 , a() -> n__a()
                                 , __(X1, X2) -> n____(X1, X2)
                                 , nil() -> n__nil()
                                 , U22(tt()) -> tt()
                                 , U11(tt()) -> tt()
                                 , U31(tt()) -> tt()
                                 , U42(tt()) -> tt()
                                 , U52(tt()) -> tt()
                                 , U61(tt()) -> tt()
                                 , U72(tt()) -> tt()
                                 , U81(tt()) -> tt()}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(?,O(n^1))
                            
                            Proof:
                              The weightgap principle applies, where following rules are oriented strictly:
                              
                              TRS Component: {isQid(n__i()) -> tt()}
                              
                              Interpretation of nonconstant growth:
                              -------------------------------------
                                The following argument positions are usable:
                                  Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                  Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                                  Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                  Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                  Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                                  Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                                  Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                Interpretation Functions:
                                 __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                              [0 0]      [0 0]      [0]
                                 nil() = [0]
                                         [0]
                                 U11(x1) = [1 0] x1 + [1]
                                           [0 0]      [1]
                                 tt() = [0]
                                        [0]
                                 U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                               [0 0]      [0 0]      [1]
                                 U22(x1) = [1 0] x1 + [1]
                                           [0 0]      [1]
                                 isList(x1) = [1 0] x1 + [0]
                                              [0 0]      [1]
                                 activate(x1) = [1 0] x1 + [0]
                                                [0 0]      [1]
                                 U31(x1) = [1 0] x1 + [1]
                                           [0 0]      [1]
                                 U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                               [0 0]      [0 0]      [1]
                                 U42(x1) = [1 1] x1 + [0]
                                           [0 0]      [1]
                                 isNeList(x1) = [1 0] x1 + [0]
                                                [0 0]      [1]
                                 U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                               [0 0]      [0 0]      [1]
                                 U52(x1) = [1 0] x1 + [1]
                                           [0 0]      [1]
                                 U61(x1) = [1 0] x1 + [1]
                                           [0 0]      [0]
                                 U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                               [0 0]      [0 0]      [1]
                                 U72(x1) = [1 0] x1 + [1]
                                           [0 0]      [1]
                                 isPal(x1) = [1 0] x1 + [0]
                                             [0 0]      [1]
                                 U81(x1) = [1 0] x1 + [1]
                                           [0 0]      [1]
                                 n__nil() = [0]
                                            [0]
                                 n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                 [0 0]      [0 0]      [0]
                                 isQid(x1) = [1 0] x1 + [0]
                                             [0 0]      [1]
                                 isNePal(x1) = [1 0] x1 + [0]
                                               [0 0]      [0]
                                 n__a() = [0]
                                          [0]
                                 n__e() = [0]
                                          [0]
                                 n__i() = [2]
                                          [0]
                                 n__o() = [1]
                                          [0]
                                 n__u() = [0]
                                          [0]
                                 a() = [0]
                                       [0]
                                 e() = [0]
                                       [0]
                                 i() = [2]
                                       [0]
                                 o() = [1]
                                       [0]
                                 u() = [0]
                                       [0]
                              
                              The strictly oriented rules are moved into the weak component.
                              
                              We consider the following Problem:
                              
                                Strict Trs:
                                  {  U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                   , U51(tt(), V2) -> U52(isList(activate(V2)))
                                   , U71(tt(), P) -> U72(isPal(activate(P)))
                                   , isList(V) -> U11(isNeList(activate(V)))
                                   , isList(n__nil()) -> tt()
                                   , isList(n____(V1, V2)) ->
                                     U21(isList(activate(V1)), activate(V2))
                                   , isNeList(V) -> U31(isQid(activate(V)))
                                   , isNeList(n____(V1, V2)) ->
                                     U41(isList(activate(V1)), activate(V2))
                                   , isNeList(n____(V1, V2)) ->
                                     U51(isNeList(activate(V1)), activate(V2))
                                   , isNePal(V) -> U61(isQid(activate(V)))
                                   , isPal(V) -> U81(isNePal(activate(V)))
                                   , isPal(n__nil()) -> tt()
                                   , isQid(n__e()) -> tt()
                                   , activate(n__nil()) -> nil()
                                   , activate(n____(X1, X2)) -> __(X1, X2)
                                   , activate(n__a()) -> a()
                                   , activate(n__e()) -> e()
                                   , activate(n__i()) -> i()
                                   , activate(n__o()) -> o()
                                   , activate(n__u()) -> u()
                                   , activate(X) -> X}
                                Weak Trs:
                                  {  isQid(n__i()) -> tt()
                                   , isQid(n__o()) -> tt()
                                   , U21(tt(), V2) -> U22(isList(activate(V2)))
                                   , isQid(n__u()) -> tt()
                                   , u() -> n__u()
                                   , o() -> n__o()
                                   , isQid(n__a()) -> tt()
                                   , i() -> n__i()
                                   , e() -> n__e()
                                   , a() -> n__a()
                                   , __(X1, X2) -> n____(X1, X2)
                                   , nil() -> n__nil()
                                   , U22(tt()) -> tt()
                                   , U11(tt()) -> tt()
                                   , U31(tt()) -> tt()
                                   , U42(tt()) -> tt()
                                   , U52(tt()) -> tt()
                                   , U61(tt()) -> tt()
                                   , U72(tt()) -> tt()
                                   , U81(tt()) -> tt()}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(?,O(n^1))
                              
                              Proof:
                                The weightgap principle applies, where following rules are oriented strictly:
                                
                                TRS Component: {U41(tt(), V2) -> U42(isNeList(activate(V2)))}
                                
                                Interpretation of nonconstant growth:
                                -------------------------------------
                                  The following argument positions are usable:
                                    Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                    Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                                    Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                    Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                    Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                                    Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                                    Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                  Interpretation Functions:
                                   __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                [0 0]      [0 0]      [0]
                                   nil() = [0]
                                           [0]
                                   U11(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                   tt() = [0]
                                          [0]
                                   U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                 [0 0]      [0 0]      [1]
                                   U22(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                   isList(x1) = [1 0] x1 + [0]
                                                [0 0]      [1]
                                   activate(x1) = [1 0] x1 + [0]
                                                  [0 0]      [1]
                                   U31(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                   U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                 [0 0]      [0 0]      [1]
                                   U42(x1) = [1 0] x1 + [0]
                                             [0 0]      [1]
                                   isNeList(x1) = [1 0] x1 + [0]
                                                  [0 0]      [1]
                                   U51(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
                                                 [0 0]      [0 0]      [1]
                                   U52(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                   U61(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                   U71(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                                 [0 0]      [0 0]      [1]
                                   U72(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                   isPal(x1) = [1 0] x1 + [0]
                                               [0 0]      [1]
                                   U81(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                   n__nil() = [0]
                                              [0]
                                   n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                   [0 0]      [0 0]      [0]
                                   isQid(x1) = [1 0] x1 + [0]
                                               [0 0]      [0]
                                   isNePal(x1) = [1 0] x1 + [0]
                                                 [0 0]      [0]
                                   n__a() = [0]
                                            [0]
                                   n__e() = [0]
                                            [0]
                                   n__i() = [0]
                                            [0]
                                   n__o() = [0]
                                            [0]
                                   n__u() = [0]
                                            [0]
                                   a() = [0]
                                         [0]
                                   e() = [0]
                                         [0]
                                   i() = [0]
                                         [0]
                                   o() = [0]
                                         [0]
                                   u() = [0]
                                         [0]
                                
                                The strictly oriented rules are moved into the weak component.
                                
                                We consider the following Problem:
                                
                                  Strict Trs:
                                    {  U51(tt(), V2) -> U52(isList(activate(V2)))
                                     , U71(tt(), P) -> U72(isPal(activate(P)))
                                     , isList(V) -> U11(isNeList(activate(V)))
                                     , isList(n__nil()) -> tt()
                                     , isList(n____(V1, V2)) ->
                                       U21(isList(activate(V1)), activate(V2))
                                     , isNeList(V) -> U31(isQid(activate(V)))
                                     , isNeList(n____(V1, V2)) ->
                                       U41(isList(activate(V1)), activate(V2))
                                     , isNeList(n____(V1, V2)) ->
                                       U51(isNeList(activate(V1)), activate(V2))
                                     , isNePal(V) -> U61(isQid(activate(V)))
                                     , isPal(V) -> U81(isNePal(activate(V)))
                                     , isPal(n__nil()) -> tt()
                                     , isQid(n__e()) -> tt()
                                     , activate(n__nil()) -> nil()
                                     , activate(n____(X1, X2)) -> __(X1, X2)
                                     , activate(n__a()) -> a()
                                     , activate(n__e()) -> e()
                                     , activate(n__i()) -> i()
                                     , activate(n__o()) -> o()
                                     , activate(n__u()) -> u()
                                     , activate(X) -> X}
                                  Weak Trs:
                                    {  U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                     , isQid(n__i()) -> tt()
                                     , isQid(n__o()) -> tt()
                                     , U21(tt(), V2) -> U22(isList(activate(V2)))
                                     , isQid(n__u()) -> tt()
                                     , u() -> n__u()
                                     , o() -> n__o()
                                     , isQid(n__a()) -> tt()
                                     , i() -> n__i()
                                     , e() -> n__e()
                                     , a() -> n__a()
                                     , __(X1, X2) -> n____(X1, X2)
                                     , nil() -> n__nil()
                                     , U22(tt()) -> tt()
                                     , U11(tt()) -> tt()
                                     , U31(tt()) -> tt()
                                     , U42(tt()) -> tt()
                                     , U52(tt()) -> tt()
                                     , U61(tt()) -> tt()
                                     , U72(tt()) -> tt()
                                     , U81(tt()) -> tt()}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(?,O(n^1))
                                
                                Proof:
                                  The weightgap principle applies, where following rules are oriented strictly:
                                  
                                  TRS Component: {isQid(n__e()) -> tt()}
                                  
                                  Interpretation of nonconstant growth:
                                  -------------------------------------
                                    The following argument positions are usable:
                                      Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                      Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                                      Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                      Uargs(isNeList) = {1}, Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                      Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                                      Uargs(isPal) = {1}, Uargs(U81) = {1}, Uargs(n____) = {},
                                      Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                    Interpretation Functions:
                                     __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                  [0 0]      [0 0]      [0]
                                     nil() = [0]
                                             [0]
                                     U11(x1) = [1 0] x1 + [0]
                                               [0 0]      [1]
                                     tt() = [0]
                                            [0]
                                     U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                   [0 0]      [0 0]      [1]
                                     U22(x1) = [1 0] x1 + [1]
                                               [0 0]      [1]
                                     isList(x1) = [1 0] x1 + [0]
                                                  [0 0]      [1]
                                     activate(x1) = [1 0] x1 + [0]
                                                    [0 0]      [1]
                                     U31(x1) = [1 0] x1 + [1]
                                               [0 0]      [1]
                                     U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                   [0 0]      [0 0]      [1]
                                     U42(x1) = [1 0] x1 + [1]
                                               [0 0]      [1]
                                     isNeList(x1) = [1 0] x1 + [0]
                                                    [0 0]      [1]
                                     U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                   [0 0]      [0 0]      [1]
                                     U52(x1) = [1 1] x1 + [0]
                                               [0 0]      [1]
                                     U61(x1) = [1 0] x1 + [1]
                                               [0 0]      [1]
                                     U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                                   [0 0]      [0 0]      [1]
                                     U72(x1) = [1 0] x1 + [1]
                                               [0 0]      [1]
                                     isPal(x1) = [1 0] x1 + [0]
                                                 [0 0]      [1]
                                     U81(x1) = [1 0] x1 + [1]
                                               [0 0]      [1]
                                     n__nil() = [0]
                                                [0]
                                     n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                     [0 0]      [0 0]      [0]
                                     isQid(x1) = [1 0] x1 + [0]
                                                 [0 0]      [1]
                                     isNePal(x1) = [1 0] x1 + [0]
                                                   [0 0]      [0]
                                     n__a() = [0]
                                              [0]
                                     n__e() = [2]
                                              [0]
                                     n__i() = [0]
                                              [0]
                                     n__o() = [0]
                                              [0]
                                     n__u() = [1]
                                              [0]
                                     a() = [0]
                                           [0]
                                     e() = [2]
                                           [0]
                                     i() = [0]
                                           [0]
                                     o() = [0]
                                           [0]
                                     u() = [1]
                                           [0]
                                  
                                  The strictly oriented rules are moved into the weak component.
                                  
                                  We consider the following Problem:
                                  
                                    Strict Trs:
                                      {  U51(tt(), V2) -> U52(isList(activate(V2)))
                                       , U71(tt(), P) -> U72(isPal(activate(P)))
                                       , isList(V) -> U11(isNeList(activate(V)))
                                       , isList(n__nil()) -> tt()
                                       , isList(n____(V1, V2)) ->
                                         U21(isList(activate(V1)), activate(V2))
                                       , isNeList(V) -> U31(isQid(activate(V)))
                                       , isNeList(n____(V1, V2)) ->
                                         U41(isList(activate(V1)), activate(V2))
                                       , isNeList(n____(V1, V2)) ->
                                         U51(isNeList(activate(V1)), activate(V2))
                                       , isNePal(V) -> U61(isQid(activate(V)))
                                       , isPal(V) -> U81(isNePal(activate(V)))
                                       , isPal(n__nil()) -> tt()
                                       , activate(n__nil()) -> nil()
                                       , activate(n____(X1, X2)) -> __(X1, X2)
                                       , activate(n__a()) -> a()
                                       , activate(n__e()) -> e()
                                       , activate(n__i()) -> i()
                                       , activate(n__o()) -> o()
                                       , activate(n__u()) -> u()
                                       , activate(X) -> X}
                                    Weak Trs:
                                      {  isQid(n__e()) -> tt()
                                       , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                       , isQid(n__i()) -> tt()
                                       , isQid(n__o()) -> tt()
                                       , U21(tt(), V2) -> U22(isList(activate(V2)))
                                       , isQid(n__u()) -> tt()
                                       , u() -> n__u()
                                       , o() -> n__o()
                                       , isQid(n__a()) -> tt()
                                       , i() -> n__i()
                                       , e() -> n__e()
                                       , a() -> n__a()
                                       , __(X1, X2) -> n____(X1, X2)
                                       , nil() -> n__nil()
                                       , U22(tt()) -> tt()
                                       , U11(tt()) -> tt()
                                       , U31(tt()) -> tt()
                                       , U42(tt()) -> tt()
                                       , U52(tt()) -> tt()
                                       , U61(tt()) -> tt()
                                       , U72(tt()) -> tt()
                                       , U81(tt()) -> tt()}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(?,O(n^1))
                                  
                                  Proof:
                                    The weightgap principle applies, where following rules are oriented strictly:
                                    
                                    TRS Component: {isPal(n__nil()) -> tt()}
                                    
                                    Interpretation of nonconstant growth:
                                    -------------------------------------
                                      The following argument positions are usable:
                                        Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                        Uargs(U22) = {1}, Uargs(isList) = {1}, Uargs(activate) = {},
                                        Uargs(U31) = {1}, Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                        Uargs(isNeList) = {1}, Uargs(U51) = {1, 2},
                                        Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {},
                                        Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1},
                                        Uargs(n____) = {}, Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                      Interpretation Functions:
                                       __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                    [1 0]      [1 0]      [0]
                                       nil() = [0]
                                               [0]
                                       U11(x1) = [1 0] x1 + [0]
                                                 [0 0]      [0]
                                       tt() = [0]
                                              [0]
                                       U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                     [0 0]      [0 0]      [0]
                                       U22(x1) = [1 0] x1 + [0]
                                                 [0 0]      [0]
                                       isList(x1) = [1 0] x1 + [0]
                                                    [0 0]      [1]
                                       activate(x1) = [1 0] x1 + [0]
                                                      [0 0]      [1]
                                       U31(x1) = [1 0] x1 + [1]
                                                 [0 0]      [1]
                                       U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                     [0 0]      [0 0]      [1]
                                       U42(x1) = [1 0] x1 + [1]
                                                 [0 0]      [1]
                                       isNeList(x1) = [1 0] x1 + [0]
                                                      [0 0]      [1]
                                       U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                     [0 0]      [0 0]      [1]
                                       U52(x1) = [1 0] x1 + [1]
                                                 [0 0]      [1]
                                       U61(x1) = [1 0] x1 + [1]
                                                 [0 0]      [1]
                                       U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                                     [0 0]      [0 0]      [1]
                                       U72(x1) = [1 0] x1 + [0]
                                                 [1 0]      [0]
                                       isPal(x1) = [1 0] x1 + [1]
                                                   [0 0]      [1]
                                       U81(x1) = [1 0] x1 + [1]
                                                 [1 0]      [1]
                                       n__nil() = [0]
                                                  [0]
                                       n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                       [0 0]      [0 0]      [0]
                                       isQid(x1) = [1 0] x1 + [0]
                                                   [0 0]      [1]
                                       isNePal(x1) = [1 0] x1 + [0]
                                                     [0 0]      [0]
                                       n__a() = [0]
                                                [0]
                                       n__e() = [1]
                                                [0]
                                       n__i() = [0]
                                                [0]
                                       n__o() = [1]
                                                [0]
                                       n__u() = [0]
                                                [0]
                                       a() = [0]
                                             [0]
                                       e() = [1]
                                             [0]
                                       i() = [0]
                                             [0]
                                       o() = [1]
                                             [0]
                                       u() = [0]
                                             [0]
                                    
                                    The strictly oriented rules are moved into the weak component.
                                    
                                    We consider the following Problem:
                                    
                                      Strict Trs:
                                        {  U51(tt(), V2) -> U52(isList(activate(V2)))
                                         , U71(tt(), P) -> U72(isPal(activate(P)))
                                         , isList(V) -> U11(isNeList(activate(V)))
                                         , isList(n__nil()) -> tt()
                                         , isList(n____(V1, V2)) ->
                                           U21(isList(activate(V1)), activate(V2))
                                         , isNeList(V) -> U31(isQid(activate(V)))
                                         , isNeList(n____(V1, V2)) ->
                                           U41(isList(activate(V1)), activate(V2))
                                         , isNeList(n____(V1, V2)) ->
                                           U51(isNeList(activate(V1)), activate(V2))
                                         , isNePal(V) -> U61(isQid(activate(V)))
                                         , isPal(V) -> U81(isNePal(activate(V)))
                                         , activate(n__nil()) -> nil()
                                         , activate(n____(X1, X2)) -> __(X1, X2)
                                         , activate(n__a()) -> a()
                                         , activate(n__e()) -> e()
                                         , activate(n__i()) -> i()
                                         , activate(n__o()) -> o()
                                         , activate(n__u()) -> u()
                                         , activate(X) -> X}
                                      Weak Trs:
                                        {  isPal(n__nil()) -> tt()
                                         , isQid(n__e()) -> tt()
                                         , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                         , isQid(n__i()) -> tt()
                                         , isQid(n__o()) -> tt()
                                         , U21(tt(), V2) -> U22(isList(activate(V2)))
                                         , isQid(n__u()) -> tt()
                                         , u() -> n__u()
                                         , o() -> n__o()
                                         , isQid(n__a()) -> tt()
                                         , i() -> n__i()
                                         , e() -> n__e()
                                         , a() -> n__a()
                                         , __(X1, X2) -> n____(X1, X2)
                                         , nil() -> n__nil()
                                         , U22(tt()) -> tt()
                                         , U11(tt()) -> tt()
                                         , U31(tt()) -> tt()
                                         , U42(tt()) -> tt()
                                         , U52(tt()) -> tt()
                                         , U61(tt()) -> tt()
                                         , U72(tt()) -> tt()
                                         , U81(tt()) -> tt()}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(?,O(n^1))
                                    
                                    Proof:
                                      The weightgap principle applies, where following rules are oriented strictly:
                                      
                                      TRS Component:
                                        {  isList(n____(V1, V2)) ->
                                           U21(isList(activate(V1)), activate(V2))
                                         , isNeList(n____(V1, V2)) ->
                                           U41(isList(activate(V1)), activate(V2))
                                         , isNeList(n____(V1, V2)) ->
                                           U51(isNeList(activate(V1)), activate(V2))}
                                      
                                      Interpretation of nonconstant growth:
                                      -------------------------------------
                                        The following argument positions are usable:
                                          Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                          Uargs(U22) = {1}, Uargs(isList) = {1},
                                          Uargs(activate) = {}, Uargs(U31) = {1},
                                          Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                          Uargs(isNeList) = {1}, Uargs(U51) = {1, 2},
                                          Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {},
                                          Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1},
                                          Uargs(n____) = {}, Uargs(isQid) = {1},
                                          Uargs(isNePal) = {1}
                                        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                        Interpretation Functions:
                                         __(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                      [1 1]      [1 0]      [0]
                                         nil() = [0]
                                                 [0]
                                         U11(x1) = [1 0] x1 + [1]
                                                   [0 0]      [1]
                                         tt() = [0]
                                                [0]
                                         U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                       [0 0]      [0 0]      [1]
                                         U22(x1) = [1 0] x1 + [0]
                                                   [0 0]      [1]
                                         isList(x1) = [1 0] x1 + [0]
                                                      [0 0]      [1]
                                         activate(x1) = [1 0] x1 + [0]
                                                        [0 0]      [1]
                                         U31(x1) = [1 0] x1 + [0]
                                                   [0 0]      [1]
                                         U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                       [0 0]      [0 0]      [1]
                                         U42(x1) = [1 0] x1 + [1]
                                                   [0 0]      [1]
                                         isNeList(x1) = [1 0] x1 + [0]
                                                        [0 0]      [1]
                                         U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                       [0 0]      [0 0]      [1]
                                         U52(x1) = [1 0] x1 + [1]
                                                   [0 0]      [0]
                                         U61(x1) = [1 0] x1 + [1]
                                                   [0 1]      [0]
                                         U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                                       [0 0]      [0 0]      [1]
                                         U72(x1) = [1 0] x1 + [1]
                                                   [0 0]      [1]
                                         isPal(x1) = [1 0] x1 + [0]
                                                     [0 0]      [1]
                                         U81(x1) = [1 0] x1 + [1]
                                                   [0 0]      [1]
                                         n__nil() = [0]
                                                    [0]
                                         n____(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                         [0 0]      [0 0]      [0]
                                         isQid(x1) = [1 0] x1 + [0]
                                                     [1 1]      [0]
                                         isNePal(x1) = [1 0] x1 + [0]
                                                       [0 0]      [0]
                                         n__a() = [0]
                                                  [0]
                                         n__e() = [0]
                                                  [0]
                                         n__i() = [0]
                                                  [0]
                                         n__o() = [0]
                                                  [0]
                                         n__u() = [1]
                                                  [3]
                                         a() = [0]
                                               [0]
                                         e() = [0]
                                               [0]
                                         i() = [0]
                                               [0]
                                         o() = [0]
                                               [0]
                                         u() = [1]
                                               [3]
                                      
                                      The strictly oriented rules are moved into the weak component.
                                      
                                      We consider the following Problem:
                                      
                                        Strict Trs:
                                          {  U51(tt(), V2) -> U52(isList(activate(V2)))
                                           , U71(tt(), P) -> U72(isPal(activate(P)))
                                           , isList(V) -> U11(isNeList(activate(V)))
                                           , isList(n__nil()) -> tt()
                                           , isNeList(V) -> U31(isQid(activate(V)))
                                           , isNePal(V) -> U61(isQid(activate(V)))
                                           , isPal(V) -> U81(isNePal(activate(V)))
                                           , activate(n__nil()) -> nil()
                                           , activate(n____(X1, X2)) -> __(X1, X2)
                                           , activate(n__a()) -> a()
                                           , activate(n__e()) -> e()
                                           , activate(n__i()) -> i()
                                           , activate(n__o()) -> o()
                                           , activate(n__u()) -> u()
                                           , activate(X) -> X}
                                        Weak Trs:
                                          {  isList(n____(V1, V2)) ->
                                             U21(isList(activate(V1)), activate(V2))
                                           , isNeList(n____(V1, V2)) ->
                                             U41(isList(activate(V1)), activate(V2))
                                           , isNeList(n____(V1, V2)) ->
                                             U51(isNeList(activate(V1)), activate(V2))
                                           , isPal(n__nil()) -> tt()
                                           , isQid(n__e()) -> tt()
                                           , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                           , isQid(n__i()) -> tt()
                                           , isQid(n__o()) -> tt()
                                           , U21(tt(), V2) -> U22(isList(activate(V2)))
                                           , isQid(n__u()) -> tt()
                                           , u() -> n__u()
                                           , o() -> n__o()
                                           , isQid(n__a()) -> tt()
                                           , i() -> n__i()
                                           , e() -> n__e()
                                           , a() -> n__a()
                                           , __(X1, X2) -> n____(X1, X2)
                                           , nil() -> n__nil()
                                           , U22(tt()) -> tt()
                                           , U11(tt()) -> tt()
                                           , U31(tt()) -> tt()
                                           , U42(tt()) -> tt()
                                           , U52(tt()) -> tt()
                                           , U61(tt()) -> tt()
                                           , U72(tt()) -> tt()
                                           , U81(tt()) -> tt()}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(?,O(n^1))
                                      
                                      Proof:
                                        The weightgap principle applies, where following rules are oriented strictly:
                                        
                                        TRS Component: {U51(tt(), V2) -> U52(isList(activate(V2)))}
                                        
                                        Interpretation of nonconstant growth:
                                        -------------------------------------
                                          The following argument positions are usable:
                                            Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                            Uargs(U22) = {1}, Uargs(isList) = {1},
                                            Uargs(activate) = {}, Uargs(U31) = {1},
                                            Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                            Uargs(isNeList) = {1}, Uargs(U51) = {1, 2},
                                            Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {},
                                            Uargs(U72) = {1}, Uargs(isPal) = {1}, Uargs(U81) = {1},
                                            Uargs(n____) = {}, Uargs(isQid) = {1},
                                            Uargs(isNePal) = {1}
                                          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                          Interpretation Functions:
                                           __(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                        [1 0]      [0 0]      [0]
                                           nil() = [2]
                                                   [0]
                                           U11(x1) = [1 0] x1 + [1]
                                                     [0 0]      [1]
                                           tt() = [2]
                                                  [0]
                                           U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                         [0 0]      [0 0]      [1]
                                           U22(x1) = [1 0] x1 + [1]
                                                     [0 0]      [1]
                                           isList(x1) = [1 0] x1 + [0]
                                                        [0 0]      [1]
                                           activate(x1) = [1 0] x1 + [0]
                                                          [0 0]      [1]
                                           U31(x1) = [1 0] x1 + [1]
                                                     [0 0]      [1]
                                           U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                         [0 0]      [0 0]      [1]
                                           U42(x1) = [1 0] x1 + [1]
                                                     [0 0]      [1]
                                           isNeList(x1) = [1 0] x1 + [0]
                                                          [0 0]      [1]
                                           U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                         [0 0]      [0 0]      [1]
                                           U52(x1) = [1 0] x1 + [1]
                                                     [0 0]      [1]
                                           U61(x1) = [1 0] x1 + [1]
                                                     [0 0]      [1]
                                           U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                                         [0 0]      [0 0]      [1]
                                           U72(x1) = [1 0] x1 + [1]
                                                     [0 0]      [1]
                                           isPal(x1) = [1 0] x1 + [0]
                                                       [0 0]      [1]
                                           U81(x1) = [1 0] x1 + [1]
                                                     [1 0]      [2]
                                           n__nil() = [2]
                                                      [0]
                                           n____(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                           [0 0]      [0 0]      [0]
                                           isQid(x1) = [1 0] x1 + [0]
                                                       [0 0]      [1]
                                           isNePal(x1) = [1 0] x1 + [0]
                                                         [0 0]      [0]
                                           n__a() = [2]
                                                    [0]
                                           n__e() = [2]
                                                    [0]
                                           n__i() = [2]
                                                    [0]
                                           n__o() = [2]
                                                    [0]
                                           n__u() = [2]
                                                    [0]
                                           a() = [2]
                                                 [0]
                                           e() = [2]
                                                 [0]
                                           i() = [2]
                                                 [0]
                                           o() = [2]
                                                 [0]
                                           u() = [2]
                                                 [0]
                                        
                                        The strictly oriented rules are moved into the weak component.
                                        
                                        We consider the following Problem:
                                        
                                          Strict Trs:
                                            {  U71(tt(), P) -> U72(isPal(activate(P)))
                                             , isList(V) -> U11(isNeList(activate(V)))
                                             , isList(n__nil()) -> tt()
                                             , isNeList(V) -> U31(isQid(activate(V)))
                                             , isNePal(V) -> U61(isQid(activate(V)))
                                             , isPal(V) -> U81(isNePal(activate(V)))
                                             , activate(n__nil()) -> nil()
                                             , activate(n____(X1, X2)) -> __(X1, X2)
                                             , activate(n__a()) -> a()
                                             , activate(n__e()) -> e()
                                             , activate(n__i()) -> i()
                                             , activate(n__o()) -> o()
                                             , activate(n__u()) -> u()
                                             , activate(X) -> X}
                                          Weak Trs:
                                            {  U51(tt(), V2) -> U52(isList(activate(V2)))
                                             , isList(n____(V1, V2)) ->
                                               U21(isList(activate(V1)), activate(V2))
                                             , isNeList(n____(V1, V2)) ->
                                               U41(isList(activate(V1)), activate(V2))
                                             , isNeList(n____(V1, V2)) ->
                                               U51(isNeList(activate(V1)), activate(V2))
                                             , isPal(n__nil()) -> tt()
                                             , isQid(n__e()) -> tt()
                                             , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                             , isQid(n__i()) -> tt()
                                             , isQid(n__o()) -> tt()
                                             , U21(tt(), V2) -> U22(isList(activate(V2)))
                                             , isQid(n__u()) -> tt()
                                             , u() -> n__u()
                                             , o() -> n__o()
                                             , isQid(n__a()) -> tt()
                                             , i() -> n__i()
                                             , e() -> n__e()
                                             , a() -> n__a()
                                             , __(X1, X2) -> n____(X1, X2)
                                             , nil() -> n__nil()
                                             , U22(tt()) -> tt()
                                             , U11(tt()) -> tt()
                                             , U31(tt()) -> tt()
                                             , U42(tt()) -> tt()
                                             , U52(tt()) -> tt()
                                             , U61(tt()) -> tt()
                                             , U72(tt()) -> tt()
                                             , U81(tt()) -> tt()}
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(?,O(n^1))
                                        
                                        Proof:
                                          The weightgap principle applies, where following rules are oriented strictly:
                                          
                                          TRS Component: {isList(n__nil()) -> tt()}
                                          
                                          Interpretation of nonconstant growth:
                                          -------------------------------------
                                            The following argument positions are usable:
                                              Uargs(__) = {}, Uargs(U11) = {1}, Uargs(U21) = {1, 2},
                                              Uargs(U22) = {1}, Uargs(isList) = {1},
                                              Uargs(activate) = {}, Uargs(U31) = {1},
                                              Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                              Uargs(isNeList) = {1}, Uargs(U51) = {1, 2},
                                              Uargs(U52) = {1}, Uargs(U61) = {1}, Uargs(U71) = {},
                                              Uargs(U72) = {1}, Uargs(isPal) = {1},
                                              Uargs(U81) = {1}, Uargs(n____) = {},
                                              Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                            Interpretation Functions:
                                             __(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                          [0 0]      [0 1]      [0]
                                             nil() = [0]
                                                     [0]
                                             U11(x1) = [1 0] x1 + [1]
                                                       [0 0]      [1]
                                             tt() = [0]
                                                    [0]
                                             U21(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                                                           [0 0]      [0 0]      [1]
                                             U22(x1) = [1 0] x1 + [0]
                                                       [0 0]      [1]
                                             isList(x1) = [1 0] x1 + [1]
                                                          [0 0]      [1]
                                             activate(x1) = [1 0] x1 + [0]
                                                            [0 0]      [1]
                                             U31(x1) = [1 0] x1 + [1]
                                                       [0 0]      [1]
                                             U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                           [0 0]      [0 0]      [1]
                                             U42(x1) = [1 0] x1 + [0]
                                                       [0 0]      [1]
                                             isNeList(x1) = [1 0] x1 + [0]
                                                            [0 0]      [1]
                                             U51(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                                                           [0 0]      [0 1]      [0]
                                             U52(x1) = [1 0] x1 + [0]
                                                       [0 0]      [0]
                                             U61(x1) = [1 0] x1 + [1]
                                                       [0 0]      [1]
                                             U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                                           [0 0]      [0 0]      [1]
                                             U72(x1) = [1 0] x1 + [1]
                                                       [0 0]      [1]
                                             isPal(x1) = [1 0] x1 + [0]
                                                         [0 0]      [1]
                                             U81(x1) = [1 0] x1 + [1]
                                                       [0 0]      [1]
                                             n__nil() = [0]
                                                        [0]
                                             n____(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                             [0 0]      [0 0]      [0]
                                             isQid(x1) = [1 0] x1 + [0]
                                                         [0 0]      [1]
                                             isNePal(x1) = [1 0] x1 + [0]
                                                           [0 0]      [0]
                                             n__a() = [0]
                                                      [0]
                                             n__e() = [0]
                                                      [0]
                                             n__i() = [0]
                                                      [0]
                                             n__o() = [0]
                                                      [0]
                                             n__u() = [0]
                                                      [0]
                                             a() = [0]
                                                   [0]
                                             e() = [0]
                                                   [0]
                                             i() = [0]
                                                   [0]
                                             o() = [0]
                                                   [0]
                                             u() = [0]
                                                   [0]
                                          
                                          The strictly oriented rules are moved into the weak component.
                                          
                                          We consider the following Problem:
                                          
                                            Strict Trs:
                                              {  U71(tt(), P) -> U72(isPal(activate(P)))
                                               , isList(V) -> U11(isNeList(activate(V)))
                                               , isNeList(V) -> U31(isQid(activate(V)))
                                               , isNePal(V) -> U61(isQid(activate(V)))
                                               , isPal(V) -> U81(isNePal(activate(V)))
                                               , activate(n__nil()) -> nil()
                                               , activate(n____(X1, X2)) -> __(X1, X2)
                                               , activate(n__a()) -> a()
                                               , activate(n__e()) -> e()
                                               , activate(n__i()) -> i()
                                               , activate(n__o()) -> o()
                                               , activate(n__u()) -> u()
                                               , activate(X) -> X}
                                            Weak Trs:
                                              {  isList(n__nil()) -> tt()
                                               , U51(tt(), V2) -> U52(isList(activate(V2)))
                                               , isList(n____(V1, V2)) ->
                                                 U21(isList(activate(V1)), activate(V2))
                                               , isNeList(n____(V1, V2)) ->
                                                 U41(isList(activate(V1)), activate(V2))
                                               , isNeList(n____(V1, V2)) ->
                                                 U51(isNeList(activate(V1)), activate(V2))
                                               , isPal(n__nil()) -> tt()
                                               , isQid(n__e()) -> tt()
                                               , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                               , isQid(n__i()) -> tt()
                                               , isQid(n__o()) -> tt()
                                               , U21(tt(), V2) -> U22(isList(activate(V2)))
                                               , isQid(n__u()) -> tt()
                                               , u() -> n__u()
                                               , o() -> n__o()
                                               , isQid(n__a()) -> tt()
                                               , i() -> n__i()
                                               , e() -> n__e()
                                               , a() -> n__a()
                                               , __(X1, X2) -> n____(X1, X2)
                                               , nil() -> n__nil()
                                               , U22(tt()) -> tt()
                                               , U11(tt()) -> tt()
                                               , U31(tt()) -> tt()
                                               , U42(tt()) -> tt()
                                               , U52(tt()) -> tt()
                                               , U61(tt()) -> tt()
                                               , U72(tt()) -> tt()
                                               , U81(tt()) -> tt()}
                                            StartTerms: basic terms
                                            Strategy: innermost
                                          
                                          Certificate: YES(?,O(n^1))
                                          
                                          Proof:
                                            The weightgap principle applies, where following rules are oriented strictly:
                                            
                                            TRS Component:
                                              {  activate(n__nil()) -> nil()
                                               , activate(n__a()) -> a()
                                               , activate(n__e()) -> e()
                                               , activate(n__i()) -> i()
                                               , activate(n__o()) -> o()
                                               , activate(n__u()) -> u()}
                                            
                                            Interpretation of nonconstant growth:
                                            -------------------------------------
                                              The following argument positions are usable:
                                                Uargs(__) = {}, Uargs(U11) = {1},
                                                Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                Uargs(isList) = {1}, Uargs(activate) = {},
                                                Uargs(U31) = {1}, Uargs(U41) = {1, 2},
                                                Uargs(U42) = {1}, Uargs(isNeList) = {1},
                                                Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                Uargs(U61) = {1}, Uargs(U71) = {}, Uargs(U72) = {1},
                                                Uargs(isPal) = {1}, Uargs(U81) = {1},
                                                Uargs(n____) = {}, Uargs(isQid) = {1},
                                                Uargs(isNePal) = {1}
                                              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                              Interpretation Functions:
                                               __(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                            [0 1]      [0 0]      [0]
                                               nil() = [0]
                                                       [0]
                                               U11(x1) = [1 0] x1 + [0]
                                                         [0 0]      [1]
                                               tt() = [0]
                                                      [0]
                                               U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                             [0 0]      [0 0]      [0]
                                               U22(x1) = [1 0] x1 + [0]
                                                         [0 0]      [0]
                                               isList(x1) = [1 0] x1 + [0]
                                                            [0 0]      [0]
                                               activate(x1) = [1 0] x1 + [1]
                                                              [0 0]      [1]
                                               U31(x1) = [1 1] x1 + [1]
                                                         [0 0]      [1]
                                               U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                             [0 0]      [0 0]      [0]
                                               U42(x1) = [1 0] x1 + [0]
                                                         [0 0]      [0]
                                               isNeList(x1) = [1 0] x1 + [0]
                                                              [0 0]      [0]
                                               U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                             [0 0]      [0 0]      [0]
                                               U52(x1) = [1 0] x1 + [0]
                                                         [0 0]      [0]
                                               U61(x1) = [1 0] x1 + [0]
                                                         [0 0]      [1]
                                               U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                                             [0 0]      [0 0]      [0]
                                               U72(x1) = [1 0] x1 + [0]
                                                         [0 0]      [1]
                                               isPal(x1) = [1 0] x1 + [0]
                                                           [0 0]      [0]
                                               U81(x1) = [1 0] x1 + [0]
                                                         [0 0]      [1]
                                               n__nil() = [0]
                                                          [0]
                                               n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                               [0 0]      [0 0]      [0]
                                               isQid(x1) = [1 0] x1 + [0]
                                                           [0 1]      [2]
                                               isNePal(x1) = [1 0] x1 + [0]
                                                             [0 0]      [0]
                                               n__a() = [0]
                                                        [0]
                                               n__e() = [0]
                                                        [0]
                                               n__i() = [0]
                                                        [0]
                                               n__o() = [0]
                                                        [0]
                                               n__u() = [0]
                                                        [0]
                                               a() = [0]
                                                     [0]
                                               e() = [0]
                                                     [0]
                                               i() = [0]
                                                     [0]
                                               o() = [0]
                                                     [0]
                                               u() = [0]
                                                     [0]
                                            
                                            The strictly oriented rules are moved into the weak component.
                                            
                                            We consider the following Problem:
                                            
                                              Strict Trs:
                                                {  U71(tt(), P) -> U72(isPal(activate(P)))
                                                 , isList(V) -> U11(isNeList(activate(V)))
                                                 , isNeList(V) -> U31(isQid(activate(V)))
                                                 , isNePal(V) -> U61(isQid(activate(V)))
                                                 , isPal(V) -> U81(isNePal(activate(V)))
                                                 , activate(n____(X1, X2)) -> __(X1, X2)
                                                 , activate(X) -> X}
                                              Weak Trs:
                                                {  activate(n__nil()) -> nil()
                                                 , activate(n__a()) -> a()
                                                 , activate(n__e()) -> e()
                                                 , activate(n__i()) -> i()
                                                 , activate(n__o()) -> o()
                                                 , activate(n__u()) -> u()
                                                 , isList(n__nil()) -> tt()
                                                 , U51(tt(), V2) -> U52(isList(activate(V2)))
                                                 , isList(n____(V1, V2)) ->
                                                   U21(isList(activate(V1)), activate(V2))
                                                 , isNeList(n____(V1, V2)) ->
                                                   U41(isList(activate(V1)), activate(V2))
                                                 , isNeList(n____(V1, V2)) ->
                                                   U51(isNeList(activate(V1)), activate(V2))
                                                 , isPal(n__nil()) -> tt()
                                                 , isQid(n__e()) -> tt()
                                                 , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                                 , isQid(n__i()) -> tt()
                                                 , isQid(n__o()) -> tt()
                                                 , U21(tt(), V2) -> U22(isList(activate(V2)))
                                                 , isQid(n__u()) -> tt()
                                                 , u() -> n__u()
                                                 , o() -> n__o()
                                                 , isQid(n__a()) -> tt()
                                                 , i() -> n__i()
                                                 , e() -> n__e()
                                                 , a() -> n__a()
                                                 , __(X1, X2) -> n____(X1, X2)
                                                 , nil() -> n__nil()
                                                 , U22(tt()) -> tt()
                                                 , U11(tt()) -> tt()
                                                 , U31(tt()) -> tt()
                                                 , U42(tt()) -> tt()
                                                 , U52(tt()) -> tt()
                                                 , U61(tt()) -> tt()
                                                 , U72(tt()) -> tt()
                                                 , U81(tt()) -> tt()}
                                              StartTerms: basic terms
                                              Strategy: innermost
                                            
                                            Certificate: YES(?,O(n^1))
                                            
                                            Proof:
                                              The weightgap principle applies, where following rules are oriented strictly:
                                              
                                              TRS Component: {isNePal(V) -> U61(isQid(activate(V)))}
                                              
                                              Interpretation of nonconstant growth:
                                              -------------------------------------
                                                The following argument positions are usable:
                                                  Uargs(__) = {}, Uargs(U11) = {1},
                                                  Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                  Uargs(isList) = {1}, Uargs(activate) = {},
                                                  Uargs(U31) = {1}, Uargs(U41) = {1, 2},
                                                  Uargs(U42) = {1}, Uargs(isNeList) = {1},
                                                  Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                  Uargs(U61) = {1}, Uargs(U71) = {},
                                                  Uargs(U72) = {1}, Uargs(isPal) = {1},
                                                  Uargs(U81) = {1}, Uargs(n____) = {},
                                                  Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                                Interpretation Functions:
                                                 __(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                              [1 1]      [1 1]      [2]
                                                 nil() = [0]
                                                         [0]
                                                 U11(x1) = [1 0] x1 + [0]
                                                           [0 0]      [1]
                                                 tt() = [0]
                                                        [0]
                                                 U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                               [0 0]      [0 0]      [0]
                                                 U22(x1) = [1 0] x1 + [1]
                                                           [0 0]      [0]
                                                 isList(x1) = [1 0] x1 + [0]
                                                              [0 0]      [0]
                                                 activate(x1) = [1 0] x1 + [0]
                                                                [0 0]      [0]
                                                 U31(x1) = [1 0] x1 + [1]
                                                           [0 0]      [1]
                                                 U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                               [0 0]      [0 0]      [1]
                                                 U42(x1) = [1 0] x1 + [0]
                                                           [0 0]      [1]
                                                 isNeList(x1) = [1 0] x1 + [1]
                                                                [1 1]      [3]
                                                 U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                               [0 1]      [0 0]      [2]
                                                 U52(x1) = [1 0] x1 + [0]
                                                           [0 0]      [1]
                                                 U61(x1) = [1 0] x1 + [1]
                                                           [0 0]      [1]
                                                 U71(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                                                               [0 0]      [0 0]      [1]
                                                 U72(x1) = [1 0] x1 + [1]
                                                           [0 0]      [1]
                                                 isPal(x1) = [1 0] x1 + [0]
                                                             [0 0]      [1]
                                                 U81(x1) = [1 0] x1 + [1]
                                                           [0 0]      [1]
                                                 n__nil() = [0]
                                                            [0]
                                                 n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                                 [0 0]      [0 0]      [2]
                                                 isQid(x1) = [1 0] x1 + [0]
                                                             [0 0]      [1]
                                                 isNePal(x1) = [1 0] x1 + [2]
                                                               [0 0]      [1]
                                                 n__a() = [0]
                                                          [0]
                                                 n__e() = [0]
                                                          [0]
                                                 n__i() = [0]
                                                          [0]
                                                 n__o() = [0]
                                                          [0]
                                                 n__u() = [0]
                                                          [0]
                                                 a() = [0]
                                                       [0]
                                                 e() = [0]
                                                       [0]
                                                 i() = [0]
                                                       [0]
                                                 o() = [0]
                                                       [0]
                                                 u() = [0]
                                                       [0]
                                              
                                              The strictly oriented rules are moved into the weak component.
                                              
                                              We consider the following Problem:
                                              
                                                Strict Trs:
                                                  {  U71(tt(), P) -> U72(isPal(activate(P)))
                                                   , isList(V) -> U11(isNeList(activate(V)))
                                                   , isNeList(V) -> U31(isQid(activate(V)))
                                                   , isPal(V) -> U81(isNePal(activate(V)))
                                                   , activate(n____(X1, X2)) -> __(X1, X2)
                                                   , activate(X) -> X}
                                                Weak Trs:
                                                  {  isNePal(V) -> U61(isQid(activate(V)))
                                                   , activate(n__nil()) -> nil()
                                                   , activate(n__a()) -> a()
                                                   , activate(n__e()) -> e()
                                                   , activate(n__i()) -> i()
                                                   , activate(n__o()) -> o()
                                                   , activate(n__u()) -> u()
                                                   , isList(n__nil()) -> tt()
                                                   , U51(tt(), V2) -> U52(isList(activate(V2)))
                                                   , isList(n____(V1, V2)) ->
                                                     U21(isList(activate(V1)), activate(V2))
                                                   , isNeList(n____(V1, V2)) ->
                                                     U41(isList(activate(V1)), activate(V2))
                                                   , isNeList(n____(V1, V2)) ->
                                                     U51(isNeList(activate(V1)), activate(V2))
                                                   , isPal(n__nil()) -> tt()
                                                   , isQid(n__e()) -> tt()
                                                   , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                                   , isQid(n__i()) -> tt()
                                                   , isQid(n__o()) -> tt()
                                                   , U21(tt(), V2) -> U22(isList(activate(V2)))
                                                   , isQid(n__u()) -> tt()
                                                   , u() -> n__u()
                                                   , o() -> n__o()
                                                   , isQid(n__a()) -> tt()
                                                   , i() -> n__i()
                                                   , e() -> n__e()
                                                   , a() -> n__a()
                                                   , __(X1, X2) -> n____(X1, X2)
                                                   , nil() -> n__nil()
                                                   , U22(tt()) -> tt()
                                                   , U11(tt()) -> tt()
                                                   , U31(tt()) -> tt()
                                                   , U42(tt()) -> tt()
                                                   , U52(tt()) -> tt()
                                                   , U61(tt()) -> tt()
                                                   , U72(tt()) -> tt()
                                                   , U81(tt()) -> tt()}
                                                StartTerms: basic terms
                                                Strategy: innermost
                                              
                                              Certificate: YES(?,O(n^1))
                                              
                                              Proof:
                                                The weightgap principle applies, where following rules are oriented strictly:
                                                
                                                TRS Component:
                                                  {U71(tt(), P) -> U72(isPal(activate(P)))}
                                                
                                                Interpretation of nonconstant growth:
                                                -------------------------------------
                                                  The following argument positions are usable:
                                                    Uargs(__) = {}, Uargs(U11) = {1},
                                                    Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                    Uargs(isList) = {1}, Uargs(activate) = {},
                                                    Uargs(U31) = {1}, Uargs(U41) = {1, 2},
                                                    Uargs(U42) = {1}, Uargs(isNeList) = {1},
                                                    Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                    Uargs(U61) = {1}, Uargs(U71) = {},
                                                    Uargs(U72) = {1}, Uargs(isPal) = {1},
                                                    Uargs(U81) = {1}, Uargs(n____) = {},
                                                    Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                                  Interpretation Functions:
                                                   __(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                [0 1]      [0 0]      [0]
                                                   nil() = [1]
                                                           [3]
                                                   U11(x1) = [1 0] x1 + [0]
                                                             [0 0]      [1]
                                                   tt() = [0]
                                                          [0]
                                                   U21(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                 [0 0]      [0 0]      [0]
                                                   U22(x1) = [1 0] x1 + [0]
                                                             [0 0]      [0]
                                                   isList(x1) = [1 0] x1 + [0]
                                                                [0 0]      [0]
                                                   activate(x1) = [1 0] x1 + [0]
                                                                  [0 1]      [2]
                                                   U31(x1) = [1 0] x1 + [0]
                                                             [0 0]      [1]
                                                   U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                 [0 0]      [0 0]      [1]
                                                   U42(x1) = [1 0] x1 + [0]
                                                             [0 0]      [0]
                                                   isNeList(x1) = [1 0] x1 + [0]
                                                                  [0 0]      [1]
                                                   U51(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                                                 [0 0]      [0 0]      [1]
                                                   U52(x1) = [1 0] x1 + [0]
                                                             [0 0]      [1]
                                                   U61(x1) = [1 0] x1 + [0]
                                                             [0 0]      [1]
                                                   U71(x1, x2) = [0 0] x1 + [1 2] x2 + [3]
                                                                 [0 0]      [0 0]      [0]
                                                   U72(x1) = [1 0] x1 + [0]
                                                             [0 0]      [0]
                                                   isPal(x1) = [1 1] x1 + [0]
                                                               [0 0]      [1]
                                                   U81(x1) = [1 1] x1 + [1]
                                                             [0 0]      [1]
                                                   n__nil() = [1]
                                                              [3]
                                                   n____(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                   [0 0]      [0 0]      [0]
                                                   isQid(x1) = [1 0] x1 + [1]
                                                               [0 0]      [0]
                                                   isNePal(x1) = [1 0] x1 + [3]
                                                                 [0 1]      [3]
                                                   n__a() = [3]
                                                            [0]
                                                   n__e() = [0]
                                                            [0]
                                                   n__i() = [0]
                                                            [0]
                                                   n__o() = [1]
                                                            [0]
                                                   n__u() = [0]
                                                            [0]
                                                   a() = [3]
                                                         [0]
                                                   e() = [0]
                                                         [0]
                                                   i() = [0]
                                                         [0]
                                                   o() = [1]
                                                         [0]
                                                   u() = [0]
                                                         [0]
                                                
                                                The strictly oriented rules are moved into the weak component.
                                                
                                                We consider the following Problem:
                                                
                                                  Strict Trs:
                                                    {  isList(V) -> U11(isNeList(activate(V)))
                                                     , isNeList(V) -> U31(isQid(activate(V)))
                                                     , isPal(V) -> U81(isNePal(activate(V)))
                                                     , activate(n____(X1, X2)) -> __(X1, X2)
                                                     , activate(X) -> X}
                                                  Weak Trs:
                                                    {  U71(tt(), P) -> U72(isPal(activate(P)))
                                                     , isNePal(V) -> U61(isQid(activate(V)))
                                                     , activate(n__nil()) -> nil()
                                                     , activate(n__a()) -> a()
                                                     , activate(n__e()) -> e()
                                                     , activate(n__i()) -> i()
                                                     , activate(n__o()) -> o()
                                                     , activate(n__u()) -> u()
                                                     , isList(n__nil()) -> tt()
                                                     , U51(tt(), V2) -> U52(isList(activate(V2)))
                                                     , isList(n____(V1, V2)) ->
                                                       U21(isList(activate(V1)), activate(V2))
                                                     , isNeList(n____(V1, V2)) ->
                                                       U41(isList(activate(V1)), activate(V2))
                                                     , isNeList(n____(V1, V2)) ->
                                                       U51(isNeList(activate(V1)), activate(V2))
                                                     , isPal(n__nil()) -> tt()
                                                     , isQid(n__e()) -> tt()
                                                     , U41(tt(), V2) -> U42(isNeList(activate(V2)))
                                                     , isQid(n__i()) -> tt()
                                                     , isQid(n__o()) -> tt()
                                                     , U21(tt(), V2) -> U22(isList(activate(V2)))
                                                     , isQid(n__u()) -> tt()
                                                     , u() -> n__u()
                                                     , o() -> n__o()
                                                     , isQid(n__a()) -> tt()
                                                     , i() -> n__i()
                                                     , e() -> n__e()
                                                     , a() -> n__a()
                                                     , __(X1, X2) -> n____(X1, X2)
                                                     , nil() -> n__nil()
                                                     , U22(tt()) -> tt()
                                                     , U11(tt()) -> tt()
                                                     , U31(tt()) -> tt()
                                                     , U42(tt()) -> tt()
                                                     , U52(tt()) -> tt()
                                                     , U61(tt()) -> tt()
                                                     , U72(tt()) -> tt()
                                                     , U81(tt()) -> tt()}
                                                  StartTerms: basic terms
                                                  Strategy: innermost
                                                
                                                Certificate: YES(?,O(n^1))
                                                
                                                Proof:
                                                  The weightgap principle applies, where following rules are oriented strictly:
                                                  
                                                  TRS Component:
                                                    {isPal(V) -> U81(isNePal(activate(V)))}
                                                  
                                                  Interpretation of nonconstant growth:
                                                  -------------------------------------
                                                    The following argument positions are usable:
                                                      Uargs(__) = {}, Uargs(U11) = {1},
                                                      Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                      Uargs(isList) = {1}, Uargs(activate) = {},
                                                      Uargs(U31) = {1}, Uargs(U41) = {1, 2},
                                                      Uargs(U42) = {1}, Uargs(isNeList) = {1},
                                                      Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                      Uargs(U61) = {1}, Uargs(U71) = {},
                                                      Uargs(U72) = {1}, Uargs(isPal) = {1},
                                                      Uargs(U81) = {1}, Uargs(n____) = {},
                                                      Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                                    Interpretation Functions:
                                                     __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                  [0 0]      [0 0]      [2]
                                                     nil() = [0]
                                                             [0]
                                                     U11(x1) = [1 0] x1 + [0]
                                                               [0 0]      [0]
                                                     tt() = [0]
                                                            [0]
                                                     U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                   [0 0]      [0 0]      [0]
                                                     U22(x1) = [1 0] x1 + [0]
                                                               [0 0]      [0]
                                                     isList(x1) = [1 1] x1 + [0]
                                                                  [0 0]      [0]
                                                     activate(x1) = [1 0] x1 + [0]
                                                                    [0 0]      [0]
                                                     U31(x1) = [1 0] x1 + [0]
                                                               [0 0]      [1]
                                                     U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                   [0 0]      [0 0]      [1]
                                                     U42(x1) = [1 0] x1 + [0]
                                                               [0 0]      [1]
                                                     isNeList(x1) = [1 0] x1 + [0]
                                                                    [0 0]      [2]
                                                     U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                   [0 0]      [0 0]      [1]
                                                     U52(x1) = [1 0] x1 + [0]
                                                               [0 0]      [0]
                                                     U61(x1) = [1 0] x1 + [0]
                                                               [0 0]      [1]
                                                     U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                                                   [0 0]      [0 0]      [1]
                                                     U72(x1) = [1 0] x1 + [1]
                                                               [0 0]      [1]
                                                     isPal(x1) = [1 0] x1 + [2]
                                                                 [0 0]      [0]
                                                     U81(x1) = [1 0] x1 + [0]
                                                               [0 0]      [0]
                                                     n__nil() = [0]
                                                                [0]
                                                     n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                     [0 0]      [0 0]      [1]
                                                     isQid(x1) = [1 0] x1 + [1]
                                                                 [0 0]      [1]
                                                     isNePal(x1) = [1 0] x1 + [1]
                                                                   [0 0]      [2]
                                                     n__a() = [0]
                                                              [0]
                                                     n__e() = [0]
                                                              [0]
                                                     n__i() = [0]
                                                              [0]
                                                     n__o() = [0]
                                                              [0]
                                                     n__u() = [0]
                                                              [0]
                                                     a() = [0]
                                                           [0]
                                                     e() = [0]
                                                           [0]
                                                     i() = [0]
                                                           [0]
                                                     o() = [0]
                                                           [0]
                                                     u() = [0]
                                                           [0]
                                                  
                                                  The strictly oriented rules are moved into the weak component.
                                                  
                                                  We consider the following Problem:
                                                  
                                                    Strict Trs:
                                                      {  isList(V) -> U11(isNeList(activate(V)))
                                                       , isNeList(V) -> U31(isQid(activate(V)))
                                                       , activate(n____(X1, X2)) -> __(X1, X2)
                                                       , activate(X) -> X}
                                                    Weak Trs:
                                                      {  isPal(V) -> U81(isNePal(activate(V)))
                                                       , U71(tt(), P) -> U72(isPal(activate(P)))
                                                       , isNePal(V) -> U61(isQid(activate(V)))
                                                       , activate(n__nil()) -> nil()
                                                       , activate(n__a()) -> a()
                                                       , activate(n__e()) -> e()
                                                       , activate(n__i()) -> i()
                                                       , activate(n__o()) -> o()
                                                       , activate(n__u()) -> u()
                                                       , isList(n__nil()) -> tt()
                                                       , U51(tt(), V2) -> U52(isList(activate(V2)))
                                                       , isList(n____(V1, V2)) ->
                                                         U21(isList(activate(V1)), activate(V2))
                                                       , isNeList(n____(V1, V2)) ->
                                                         U41(isList(activate(V1)), activate(V2))
                                                       , isNeList(n____(V1, V2)) ->
                                                         U51(isNeList(activate(V1)), activate(V2))
                                                       , isPal(n__nil()) -> tt()
                                                       , isQid(n__e()) -> tt()
                                                       , U41(tt(), V2) ->
                                                         U42(isNeList(activate(V2)))
                                                       , isQid(n__i()) -> tt()
                                                       , isQid(n__o()) -> tt()
                                                       , U21(tt(), V2) -> U22(isList(activate(V2)))
                                                       , isQid(n__u()) -> tt()
                                                       , u() -> n__u()
                                                       , o() -> n__o()
                                                       , isQid(n__a()) -> tt()
                                                       , i() -> n__i()
                                                       , e() -> n__e()
                                                       , a() -> n__a()
                                                       , __(X1, X2) -> n____(X1, X2)
                                                       , nil() -> n__nil()
                                                       , U22(tt()) -> tt()
                                                       , U11(tt()) -> tt()
                                                       , U31(tt()) -> tt()
                                                       , U42(tt()) -> tt()
                                                       , U52(tt()) -> tt()
                                                       , U61(tt()) -> tt()
                                                       , U72(tt()) -> tt()
                                                       , U81(tt()) -> tt()}
                                                    StartTerms: basic terms
                                                    Strategy: innermost
                                                  
                                                  Certificate: YES(?,O(n^1))
                                                  
                                                  Proof:
                                                    The weightgap principle applies, where following rules are oriented strictly:
                                                    
                                                    TRS Component:
                                                      {isNeList(V) -> U31(isQid(activate(V)))}
                                                    
                                                    Interpretation of nonconstant growth:
                                                    -------------------------------------
                                                      The following argument positions are usable:
                                                        Uargs(__) = {}, Uargs(U11) = {1},
                                                        Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                        Uargs(isList) = {1}, Uargs(activate) = {},
                                                        Uargs(U31) = {1}, Uargs(U41) = {1, 2},
                                                        Uargs(U42) = {1}, Uargs(isNeList) = {1},
                                                        Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                        Uargs(U61) = {1}, Uargs(U71) = {},
                                                        Uargs(U72) = {1}, Uargs(isPal) = {1},
                                                        Uargs(U81) = {1}, Uargs(n____) = {},
                                                        Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                                      Interpretation Functions:
                                                       __(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                    [0 1]      [0 0]      [0]
                                                       nil() = [3]
                                                               [0]
                                                       U11(x1) = [1 0] x1 + [1]
                                                                 [0 0]      [1]
                                                       tt() = [2]
                                                              [1]
                                                       U21(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                     [0 0]      [0 0]      [1]
                                                       U22(x1) = [1 0] x1 + [1]
                                                                 [0 0]      [1]
                                                       isList(x1) = [1 0] x1 + [0]
                                                                    [0 0]      [1]
                                                       activate(x1) = [1 0] x1 + [0]
                                                                      [0 0]      [1]
                                                       U31(x1) = [1 0] x1 + [0]
                                                                 [0 0]      [1]
                                                       U41(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                     [0 0]      [0 0]      [1]
                                                       U42(x1) = [1 0] x1 + [0]
                                                                 [0 0]      [1]
                                                       isNeList(x1) = [1 0] x1 + [1]
                                                                      [0 0]      [1]
                                                       U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                     [0 0]      [0 0]      [1]
                                                       U52(x1) = [1 0] x1 + [1]
                                                                 [0 0]      [1]
                                                       U61(x1) = [1 0] x1 + [0]
                                                                 [0 0]      [1]
                                                       U71(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                                     [0 1]      [0 0]      [3]
                                                       U72(x1) = [1 0] x1 + [3]
                                                                 [0 0]      [2]
                                                       isPal(x1) = [1 0] x1 + [1]
                                                                   [0 0]      [1]
                                                       U81(x1) = [1 0] x1 + [1]
                                                                 [0 0]      [1]
                                                       n__nil() = [3]
                                                                  [0]
                                                       n____(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                       [0 0]      [0 0]      [0]
                                                       isQid(x1) = [1 0] x1 + [0]
                                                                   [0 0]      [2]
                                                       isNePal(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [2]
                                                       n__a() = [2]
                                                                [0]
                                                       n__e() = [2]
                                                                [0]
                                                       n__i() = [2]
                                                                [0]
                                                       n__o() = [2]
                                                                [0]
                                                       n__u() = [2]
                                                                [0]
                                                       a() = [2]
                                                             [0]
                                                       e() = [2]
                                                             [0]
                                                       i() = [2]
                                                             [0]
                                                       o() = [2]
                                                             [0]
                                                       u() = [2]
                                                             [0]
                                                    
                                                    The strictly oriented rules are moved into the weak component.
                                                    
                                                    We consider the following Problem:
                                                    
                                                      Strict Trs:
                                                        {  isList(V) -> U11(isNeList(activate(V)))
                                                         , activate(n____(X1, X2)) -> __(X1, X2)
                                                         , activate(X) -> X}
                                                      Weak Trs:
                                                        {  isNeList(V) -> U31(isQid(activate(V)))
                                                         , isPal(V) -> U81(isNePal(activate(V)))
                                                         , U71(tt(), P) -> U72(isPal(activate(P)))
                                                         , isNePal(V) -> U61(isQid(activate(V)))
                                                         , activate(n__nil()) -> nil()
                                                         , activate(n__a()) -> a()
                                                         , activate(n__e()) -> e()
                                                         , activate(n__i()) -> i()
                                                         , activate(n__o()) -> o()
                                                         , activate(n__u()) -> u()
                                                         , isList(n__nil()) -> tt()
                                                         , U51(tt(), V2) ->
                                                           U52(isList(activate(V2)))
                                                         , isList(n____(V1, V2)) ->
                                                           U21(isList(activate(V1)), activate(V2))
                                                         , isNeList(n____(V1, V2)) ->
                                                           U41(isList(activate(V1)), activate(V2))
                                                         , isNeList(n____(V1, V2)) ->
                                                           U51(isNeList(activate(V1)), activate(V2))
                                                         , isPal(n__nil()) -> tt()
                                                         , isQid(n__e()) -> tt()
                                                         , U41(tt(), V2) ->
                                                           U42(isNeList(activate(V2)))
                                                         , isQid(n__i()) -> tt()
                                                         , isQid(n__o()) -> tt()
                                                         , U21(tt(), V2) ->
                                                           U22(isList(activate(V2)))
                                                         , isQid(n__u()) -> tt()
                                                         , u() -> n__u()
                                                         , o() -> n__o()
                                                         , isQid(n__a()) -> tt()
                                                         , i() -> n__i()
                                                         , e() -> n__e()
                                                         , a() -> n__a()
                                                         , __(X1, X2) -> n____(X1, X2)
                                                         , nil() -> n__nil()
                                                         , U22(tt()) -> tt()
                                                         , U11(tt()) -> tt()
                                                         , U31(tt()) -> tt()
                                                         , U42(tt()) -> tt()
                                                         , U52(tt()) -> tt()
                                                         , U61(tt()) -> tt()
                                                         , U72(tt()) -> tt()
                                                         , U81(tt()) -> tt()}
                                                      StartTerms: basic terms
                                                      Strategy: innermost
                                                    
                                                    Certificate: YES(?,O(n^1))
                                                    
                                                    Proof:
                                                      The weightgap principle applies, where following rules are oriented strictly:
                                                      
                                                      TRS Component:
                                                        {isList(V) -> U11(isNeList(activate(V)))}
                                                      
                                                      Interpretation of nonconstant growth:
                                                      -------------------------------------
                                                        The following argument positions are usable:
                                                          Uargs(__) = {}, Uargs(U11) = {1},
                                                          Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                          Uargs(isList) = {1}, Uargs(activate) = {},
                                                          Uargs(U31) = {1}, Uargs(U41) = {1, 2},
                                                          Uargs(U42) = {1}, Uargs(isNeList) = {1},
                                                          Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                          Uargs(U61) = {1}, Uargs(U71) = {},
                                                          Uargs(U72) = {1}, Uargs(isPal) = {1},
                                                          Uargs(U81) = {1}, Uargs(n____) = {},
                                                          Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                                        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                                        Interpretation Functions:
                                                         __(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                      [1 1]      [1 0]      [0]
                                                         nil() = [2]
                                                                 [2]
                                                         U11(x1) = [1 0] x1 + [0]
                                                                   [0 0]      [0]
                                                         tt() = [1]
                                                                [0]
                                                         U21(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                       [0 0]      [1 0]      [0]
                                                         U22(x1) = [1 0] x1 + [0]
                                                                   [0 0]      [0]
                                                         isList(x1) = [1 0] x1 + [1]
                                                                      [1 1]      [0]
                                                         activate(x1) = [1 0] x1 + [0]
                                                                        [1 0]      [0]
                                                         U31(x1) = [1 0] x1 + [0]
                                                                   [0 0]      [0]
                                                         U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                       [0 0]      [1 0]      [0]
                                                         U42(x1) = [1 0] x1 + [1]
                                                                   [1 0]      [0]
                                                         isNeList(x1) = [1 0] x1 + [0]
                                                                        [0 1]      [0]
                                                         U51(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                       [0 0]      [0 0]      [0]
                                                         U52(x1) = [1 0] x1 + [0]
                                                                   [0 0]      [0]
                                                         U61(x1) = [1 0] x1 + [0]
                                                                   [0 0]      [1]
                                                         U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                                                       [0 0]      [0 0]      [1]
                                                         U72(x1) = [1 0] x1 + [0]
                                                                   [0 0]      [1]
                                                         isPal(x1) = [1 0] x1 + [3]
                                                                     [0 0]      [1]
                                                         U81(x1) = [1 0] x1 + [3]
                                                                   [0 0]      [1]
                                                         n__nil() = [2]
                                                                    [2]
                                                         n____(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                         [0 0]      [1 0]      [0]
                                                         isQid(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                         isNePal(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [2]
                                                         n__a() = [1]
                                                                  [0]
                                                         n__e() = [1]
                                                                  [0]
                                                         n__i() = [2]
                                                                  [0]
                                                         n__o() = [1]
                                                                  [0]
                                                         n__u() = [1]
                                                                  [0]
                                                         a() = [1]
                                                               [0]
                                                         e() = [1]
                                                               [0]
                                                         i() = [2]
                                                               [0]
                                                         o() = [1]
                                                               [0]
                                                         u() = [1]
                                                               [0]
                                                      
                                                      The strictly oriented rules are moved into the weak component.
                                                      
                                                      We consider the following Problem:
                                                      
                                                        Strict Trs:
                                                          {  activate(n____(X1, X2)) -> __(X1, X2)
                                                           , activate(X) -> X}
                                                        Weak Trs:
                                                          {  isList(V) -> U11(isNeList(activate(V)))
                                                           , isNeList(V) -> U31(isQid(activate(V)))
                                                           , isPal(V) -> U81(isNePal(activate(V)))
                                                           , U71(tt(), P) -> U72(isPal(activate(P)))
                                                           , isNePal(V) -> U61(isQid(activate(V)))
                                                           , activate(n__nil()) -> nil()
                                                           , activate(n__a()) -> a()
                                                           , activate(n__e()) -> e()
                                                           , activate(n__i()) -> i()
                                                           , activate(n__o()) -> o()
                                                           , activate(n__u()) -> u()
                                                           , isList(n__nil()) -> tt()
                                                           , U51(tt(), V2) ->
                                                             U52(isList(activate(V2)))
                                                           , isList(n____(V1, V2)) ->
                                                             U21(isList(activate(V1)), activate(V2))
                                                           , isNeList(n____(V1, V2)) ->
                                                             U41(isList(activate(V1)), activate(V2))
                                                           , isNeList(n____(V1, V2)) ->
                                                             U51(isNeList(activate(V1)),
                                                                 activate(V2))
                                                           , isPal(n__nil()) -> tt()
                                                           , isQid(n__e()) -> tt()
                                                           , U41(tt(), V2) ->
                                                             U42(isNeList(activate(V2)))
                                                           , isQid(n__i()) -> tt()
                                                           , isQid(n__o()) -> tt()
                                                           , U21(tt(), V2) ->
                                                             U22(isList(activate(V2)))
                                                           , isQid(n__u()) -> tt()
                                                           , u() -> n__u()
                                                           , o() -> n__o()
                                                           , isQid(n__a()) -> tt()
                                                           , i() -> n__i()
                                                           , e() -> n__e()
                                                           , a() -> n__a()
                                                           , __(X1, X2) -> n____(X1, X2)
                                                           , nil() -> n__nil()
                                                           , U22(tt()) -> tt()
                                                           , U11(tt()) -> tt()
                                                           , U31(tt()) -> tt()
                                                           , U42(tt()) -> tt()
                                                           , U52(tt()) -> tt()
                                                           , U61(tt()) -> tt()
                                                           , U72(tt()) -> tt()
                                                           , U81(tt()) -> tt()}
                                                        StartTerms: basic terms
                                                        Strategy: innermost
                                                      
                                                      Certificate: YES(?,O(n^1))
                                                      
                                                      Proof:
                                                        The weightgap principle applies, where following rules are oriented strictly:
                                                        
                                                        TRS Component:
                                                          {activate(n____(X1, X2)) -> __(X1, X2)}
                                                        
                                                        Interpretation of nonconstant growth:
                                                        -------------------------------------
                                                          The following argument positions are usable:
                                                            Uargs(__) = {}, Uargs(U11) = {1},
                                                            Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                            Uargs(isList) = {1},
                                                            Uargs(activate) = {}, Uargs(U31) = {1},
                                                            Uargs(U41) = {1, 2}, Uargs(U42) = {1},
                                                            Uargs(isNeList) = {1},
                                                            Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                            Uargs(U61) = {1}, Uargs(U71) = {},
                                                            Uargs(U72) = {1}, Uargs(isPal) = {1},
                                                            Uargs(U81) = {1}, Uargs(n____) = {},
                                                            Uargs(isQid) = {1}, Uargs(isNePal) = {1}
                                                          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                                          Interpretation Functions:
                                                           __(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                                        [0 0]      [0 0]      [0]
                                                           nil() = [2]
                                                                   [0]
                                                           U11(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           tt() = [3]
                                                                  [0]
                                                           U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                         [0 0]      [0 0]      [1]
                                                           U22(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           isList(x1) = [1 0] x1 + [3]
                                                                        [0 0]      [1]
                                                           activate(x1) = [1 0] x1 + [1]
                                                                          [0 0]      [1]
                                                           U31(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                         [0 0]      [0 0]      [1]
                                                           U42(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           isNeList(x1) = [1 0] x1 + [2]
                                                                          [0 0]      [1]
                                                           U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                         [0 0]      [0 0]      [1]
                                                           U52(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           U61(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                                                         [0 0]      [0 0]      [1]
                                                           U72(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           isPal(x1) = [1 0] x1 + [2]
                                                                       [0 0]      [1]
                                                           U81(x1) = [1 0] x1 + [0]
                                                                     [0 0]      [1]
                                                           n__nil() = [2]
                                                                      [0]
                                                           n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                                           [0 0]      [0 0]      [0]
                                                           isQid(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [1]
                                                           isNePal(x1) = [1 0] x1 + [1]
                                                                         [0 0]      [2]
                                                           n__a() = [3]
                                                                    [0]
                                                           n__e() = [3]
                                                                    [0]
                                                           n__i() = [3]
                                                                    [0]
                                                           n__o() = [3]
                                                                    [0]
                                                           n__u() = [3]
                                                                    [0]
                                                           a() = [3]
                                                                 [0]
                                                           e() = [3]
                                                                 [0]
                                                           i() = [3]
                                                                 [0]
                                                           o() = [3]
                                                                 [0]
                                                           u() = [3]
                                                                 [0]
                                                        
                                                        The strictly oriented rules are moved into the weak component.
                                                        
                                                        We consider the following Problem:
                                                        
                                                          Strict Trs: {activate(X) -> X}
                                                          Weak Trs:
                                                            {  activate(n____(X1, X2)) -> __(X1, X2)
                                                             , isList(V) ->
                                                               U11(isNeList(activate(V)))
                                                             , isNeList(V) ->
                                                               U31(isQid(activate(V)))
                                                             , isPal(V) -> U81(isNePal(activate(V)))
                                                             , U71(tt(), P) ->
                                                               U72(isPal(activate(P)))
                                                             , isNePal(V) -> U61(isQid(activate(V)))
                                                             , activate(n__nil()) -> nil()
                                                             , activate(n__a()) -> a()
                                                             , activate(n__e()) -> e()
                                                             , activate(n__i()) -> i()
                                                             , activate(n__o()) -> o()
                                                             , activate(n__u()) -> u()
                                                             , isList(n__nil()) -> tt()
                                                             , U51(tt(), V2) ->
                                                               U52(isList(activate(V2)))
                                                             , isList(n____(V1, V2)) ->
                                                               U21(isList(activate(V1)),
                                                                   activate(V2))
                                                             , isNeList(n____(V1, V2)) ->
                                                               U41(isList(activate(V1)),
                                                                   activate(V2))
                                                             , isNeList(n____(V1, V2)) ->
                                                               U51(isNeList(activate(V1)),
                                                                   activate(V2))
                                                             , isPal(n__nil()) -> tt()
                                                             , isQid(n__e()) -> tt()
                                                             , U41(tt(), V2) ->
                                                               U42(isNeList(activate(V2)))
                                                             , isQid(n__i()) -> tt()
                                                             , isQid(n__o()) -> tt()
                                                             , U21(tt(), V2) ->
                                                               U22(isList(activate(V2)))
                                                             , isQid(n__u()) -> tt()
                                                             , u() -> n__u()
                                                             , o() -> n__o()
                                                             , isQid(n__a()) -> tt()
                                                             , i() -> n__i()
                                                             , e() -> n__e()
                                                             , a() -> n__a()
                                                             , __(X1, X2) -> n____(X1, X2)
                                                             , nil() -> n__nil()
                                                             , U22(tt()) -> tt()
                                                             , U11(tt()) -> tt()
                                                             , U31(tt()) -> tt()
                                                             , U42(tt()) -> tt()
                                                             , U52(tt()) -> tt()
                                                             , U61(tt()) -> tt()
                                                             , U72(tt()) -> tt()
                                                             , U81(tt()) -> tt()}
                                                          StartTerms: basic terms
                                                          Strategy: innermost
                                                        
                                                        Certificate: YES(?,O(n^1))
                                                        
                                                        Proof:
                                                          The weightgap principle applies, where following rules are oriented strictly:
                                                          
                                                          TRS Component: {activate(X) -> X}
                                                          
                                                          Interpretation of nonconstant growth:
                                                          -------------------------------------
                                                            The following argument positions are usable:
                                                              Uargs(__) = {}, Uargs(U11) = {1},
                                                              Uargs(U21) = {1, 2}, Uargs(U22) = {1},
                                                              Uargs(isList) = {1},
                                                              Uargs(activate) = {},
                                                              Uargs(U31) = {1}, Uargs(U41) = {1, 2},
                                                              Uargs(U42) = {1},
                                                              Uargs(isNeList) = {1},
                                                              Uargs(U51) = {1, 2}, Uargs(U52) = {1},
                                                              Uargs(U61) = {1}, Uargs(U71) = {},
                                                              Uargs(U72) = {1}, Uargs(isPal) = {1},
                                                              Uargs(U81) = {1}, Uargs(n____) = {},
                                                              Uargs(isQid) = {1},
                                                              Uargs(isNePal) = {1}
                                                            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                                            Interpretation Functions:
                                                             __(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                                          [0 0]      [0 0]      [0]
                                                             nil() = [2]
                                                                     [0]
                                                             U11(x1) = [1 0] x1 + [0]
                                                                       [0 1]      [0]
                                                             tt() = [3]
                                                                    [0]
                                                             U21(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                           [0 0]      [0 0]      [1]
                                                             U22(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [1]
                                                             isList(x1) = [1 0] x1 + [3]
                                                                          [0 1]      [1]
                                                             activate(x1) = [1 0] x1 + [1]
                                                                            [0 1]      [1]
                                                             U31(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [0]
                                                             U41(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                                           [0 0]      [0 0]      [0]
                                                             U42(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [0]
                                                             isNeList(x1) = [1 0] x1 + [2]
                                                                            [0 1]      [0]
                                                             U51(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                                           [0 0]      [0 0]      [0]
                                                             U52(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [0]
                                                             U61(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [1]
                                                             U71(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                                                           [0 0]      [0 0]      [1]
                                                             U72(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [1]
                                                             isPal(x1) = [1 0] x1 + [2]
                                                                         [0 0]      [1]
                                                             U81(x1) = [1 0] x1 + [0]
                                                                       [0 0]      [1]
                                                             n__nil() = [2]
                                                                        [0]
                                                             n____(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                                                             [0 0]      [0 0]      [0]
                                                             isQid(x1) = [1 0] x1 + [0]
                                                                         [0 0]      [1]
                                                             isNePal(x1) = [1 0] x1 + [1]
                                                                           [0 0]      [2]
                                                             n__a() = [3]
                                                                      [0]
                                                             n__e() = [3]
                                                                      [0]
                                                             n__i() = [3]
                                                                      [0]
                                                             n__o() = [3]
                                                                      [0]
                                                             n__u() = [3]
                                                                      [0]
                                                             a() = [3]
                                                                   [0]
                                                             e() = [3]
                                                                   [0]
                                                             i() = [3]
                                                                   [0]
                                                             o() = [3]
                                                                   [0]
                                                             u() = [3]
                                                                   [0]
                                                          
                                                          The strictly oriented rules are moved into the weak component.
                                                          
                                                          We consider the following Problem:
                                                          
                                                            Weak Trs:
                                                              {  activate(X) -> X
                                                               , activate(n____(X1, X2)) ->
                                                                 __(X1, X2)
                                                               , isList(V) ->
                                                                 U11(isNeList(activate(V)))
                                                               , isNeList(V) ->
                                                                 U31(isQid(activate(V)))
                                                               , isPal(V) ->
                                                                 U81(isNePal(activate(V)))
                                                               , U71(tt(), P) ->
                                                                 U72(isPal(activate(P)))
                                                               , isNePal(V) ->
                                                                 U61(isQid(activate(V)))
                                                               , activate(n__nil()) -> nil()
                                                               , activate(n__a()) -> a()
                                                               , activate(n__e()) -> e()
                                                               , activate(n__i()) -> i()
                                                               , activate(n__o()) -> o()
                                                               , activate(n__u()) -> u()
                                                               , isList(n__nil()) -> tt()
                                                               , U51(tt(), V2) ->
                                                                 U52(isList(activate(V2)))
                                                               , isList(n____(V1, V2)) ->
                                                                 U21(isList(activate(V1)),
                                                                     activate(V2))
                                                               , isNeList(n____(V1, V2)) ->
                                                                 U41(isList(activate(V1)),
                                                                     activate(V2))
                                                               , isNeList(n____(V1, V2)) ->
                                                                 U51(isNeList(activate(V1)),
                                                                     activate(V2))
                                                               , isPal(n__nil()) -> tt()
                                                               , isQid(n__e()) -> tt()
                                                               , U41(tt(), V2) ->
                                                                 U42(isNeList(activate(V2)))
                                                               , isQid(n__i()) -> tt()
                                                               , isQid(n__o()) -> tt()
                                                               , U21(tt(), V2) ->
                                                                 U22(isList(activate(V2)))
                                                               , isQid(n__u()) -> tt()
                                                               , u() -> n__u()
                                                               , o() -> n__o()
                                                               , isQid(n__a()) -> tt()
                                                               , i() -> n__i()
                                                               , e() -> n__e()
                                                               , a() -> n__a()
                                                               , __(X1, X2) -> n____(X1, X2)
                                                               , nil() -> n__nil()
                                                               , U22(tt()) -> tt()
                                                               , U11(tt()) -> tt()
                                                               , U31(tt()) -> tt()
                                                               , U42(tt()) -> tt()
                                                               , U52(tt()) -> tt()
                                                               , U61(tt()) -> tt()
                                                               , U72(tt()) -> tt()
                                                               , U81(tt()) -> tt()}
                                                            StartTerms: basic terms
                                                            Strategy: innermost
                                                          
                                                          Certificate: YES(O(1),O(1))
                                                          
                                                          Proof:
                                                            We consider the following Problem:
                                                            
                                                              Weak Trs:
                                                                {  activate(X) -> X
                                                                 , activate(n____(X1, X2)) ->
                                                                   __(X1, X2)
                                                                 , isList(V) ->
                                                                   U11(isNeList(activate(V)))
                                                                 , isNeList(V) ->
                                                                   U31(isQid(activate(V)))
                                                                 , isPal(V) ->
                                                                   U81(isNePal(activate(V)))
                                                                 , U71(tt(), P) ->
                                                                   U72(isPal(activate(P)))
                                                                 , isNePal(V) ->
                                                                   U61(isQid(activate(V)))
                                                                 , activate(n__nil()) -> nil()
                                                                 , activate(n__a()) -> a()
                                                                 , activate(n__e()) -> e()
                                                                 , activate(n__i()) -> i()
                                                                 , activate(n__o()) -> o()
                                                                 , activate(n__u()) -> u()
                                                                 , isList(n__nil()) -> tt()
                                                                 , U51(tt(), V2) ->
                                                                   U52(isList(activate(V2)))
                                                                 , isList(n____(V1, V2)) ->
                                                                   U21(isList(activate(V1)),
                                                                       activate(V2))
                                                                 , isNeList(n____(V1, V2)) ->
                                                                   U41(isList(activate(V1)),
                                                                       activate(V2))
                                                                 , isNeList(n____(V1, V2)) ->
                                                                   U51(isNeList(activate(V1)),
                                                                       activate(V2))
                                                                 , isPal(n__nil()) -> tt()
                                                                 , isQid(n__e()) -> tt()
                                                                 , U41(tt(), V2) ->
                                                                   U42(isNeList(activate(V2)))
                                                                 , isQid(n__i()) -> tt()
                                                                 , isQid(n__o()) -> tt()
                                                                 , U21(tt(), V2) ->
                                                                   U22(isList(activate(V2)))
                                                                 , isQid(n__u()) -> tt()
                                                                 , u() -> n__u()
                                                                 , o() -> n__o()
                                                                 , isQid(n__a()) -> tt()
                                                                 , i() -> n__i()
                                                                 , e() -> n__e()
                                                                 , a() -> n__a()
                                                                 , __(X1, X2) -> n____(X1, X2)
                                                                 , nil() -> n__nil()
                                                                 , U22(tt()) -> tt()
                                                                 , U11(tt()) -> tt()
                                                                 , U31(tt()) -> tt()
                                                                 , U42(tt()) -> tt()
                                                                 , U52(tt()) -> tt()
                                                                 , U61(tt()) -> tt()
                                                                 , U72(tt()) -> tt()
                                                                 , U81(tt()) -> tt()}
                                                              StartTerms: basic terms
                                                              Strategy: innermost
                                                            
                                                            Certificate: YES(O(1),O(1))
                                                            
                                                            Proof:
                                                              Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))