Problem: active(zeros()) -> mark(cons(0(),zeros())) active(and(tt(),X)) -> mark(X) active(length(nil())) -> mark(0()) active(length(cons(N,L))) -> mark(s(length(L))) active(take(0(),IL)) -> mark(nil()) active(take(s(M),cons(N,IL))) -> mark(cons(N,take(M,IL))) mark(zeros()) -> active(zeros()) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(0()) -> active(0()) mark(and(X1,X2)) -> active(and(mark(X1),X2)) mark(tt()) -> active(tt()) mark(length(X)) -> active(length(mark(X))) mark(nil()) -> active(nil()) mark(s(X)) -> active(s(mark(X))) mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) and(mark(X1),X2) -> and(X1,X2) and(X1,mark(X2)) -> and(X1,X2) and(active(X1),X2) -> and(X1,X2) and(X1,active(X2)) -> and(X1,X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) take(mark(X1),X2) -> take(X1,X2) take(X1,mark(X2)) -> take(X1,X2) take(active(X1),X2) -> take(X1,X2) take(X1,active(X2)) -> take(X1,X2) Proof: Bounds Processor: bound: 4 enrichment: match automaton: final states: {11,10,9,8,7,6,5} transitions: active1(15) -> 6* active1(16) -> 6* nil1() -> 15* tt1() -> 15* 01() -> 16* zeros1() -> 15* mark1(17) -> 5* cons1(16,15) -> 17* active2(27) -> 5* active2(19) -> 26* cons2(19,18) -> 20* cons2(26,15) -> 27* mark2(20) -> 6* mark2(16) -> 26* 02() -> 19* zeros2() -> 18* active0(2) -> 5* active0(4) -> 5* active0(1) -> 5* active0(3) -> 5* cons3(28,18) -> 29* cons3(19,15) -> 27* cons3(16,15) -> 27* zeros0() -> 1* active3(29) -> 6* active3(33) -> 28* mark0(2) -> 6* mark0(4) -> 6* mark0(1) -> 6* mark0(3) -> 6* mark3(19) -> 28* cons0(3,1) -> 7* cons0(3,3) -> 7* cons0(4,2) -> 7* cons0(4,4) -> 7* cons0(1,2) -> 7* cons0(1,4) -> 7* cons0(2,1) -> 7* cons0(2,3) -> 7* cons0(3,2) -> 7* cons0(3,4) -> 7* cons0(4,1) -> 7* cons0(4,3) -> 7* cons0(1,1) -> 7* cons0(1,3) -> 7* cons0(2,2) -> 7* cons0(2,4) -> 7* cons4(19,18) -> 29* cons4(33,18) -> 29* 00() -> 2* 03() -> 33* and0(3,1) -> 8* and0(3,3) -> 8* and0(4,2) -> 8* and0(4,4) -> 8* and0(1,2) -> 8* and0(1,4) -> 8* and0(2,1) -> 8* and0(2,3) -> 8* and0(3,2) -> 8* and0(3,4) -> 8* and0(4,1) -> 8* and0(4,3) -> 8* and0(1,1) -> 8* and0(1,3) -> 8* and0(2,2) -> 8* and0(2,4) -> 8* tt0() -> 3* length0(2) -> 9* length0(4) -> 9* length0(1) -> 9* length0(3) -> 9* nil0() -> 4* s0(2) -> 10* s0(4) -> 10* s0(1) -> 10* s0(3) -> 10* take0(3,1) -> 11* take0(3,3) -> 11* take0(4,2) -> 11* take0(4,4) -> 11* take0(1,2) -> 11* take0(1,4) -> 11* take0(2,1) -> 11* take0(2,3) -> 11* take0(3,2) -> 11* take0(3,4) -> 11* take0(4,1) -> 11* take0(4,3) -> 11* take0(1,1) -> 11* take0(1,3) -> 11* take0(2,2) -> 11* take0(2,4) -> 11* problem: Qed