Problem:
active(zeros()) -> mark(cons(0(),zeros()))
active(and(tt(),X)) -> mark(X)
active(length(nil())) -> mark(0())
active(length(cons(N,L))) -> mark(s(length(L)))
active(take(0(),IL)) -> mark(nil())
active(take(s(M),cons(N,IL))) -> mark(cons(N,take(M,IL)))
mark(zeros()) -> active(zeros())
mark(cons(X1,X2)) -> active(cons(mark(X1),X2))
mark(0()) -> active(0())
mark(and(X1,X2)) -> active(and(mark(X1),X2))
mark(tt()) -> active(tt())
mark(length(X)) -> active(length(mark(X)))
mark(nil()) -> active(nil())
mark(s(X)) -> active(s(mark(X)))
mark(take(X1,X2)) -> active(take(mark(X1),mark(X2)))
cons(mark(X1),X2) -> cons(X1,X2)
cons(X1,mark(X2)) -> cons(X1,X2)
cons(active(X1),X2) -> cons(X1,X2)
cons(X1,active(X2)) -> cons(X1,X2)
and(mark(X1),X2) -> and(X1,X2)
and(X1,mark(X2)) -> and(X1,X2)
and(active(X1),X2) -> and(X1,X2)
and(X1,active(X2)) -> and(X1,X2)
length(mark(X)) -> length(X)
length(active(X)) -> length(X)
s(mark(X)) -> s(X)
s(active(X)) -> s(X)
take(mark(X1),X2) -> take(X1,X2)
take(X1,mark(X2)) -> take(X1,X2)
take(active(X1),X2) -> take(X1,X2)
take(X1,active(X2)) -> take(X1,X2)
Proof:
Bounds Processor:
bound: 4
enrichment: match
automaton:
final states: {11,10,9,8,7,6,5}
transitions:
active1(15) -> 6*
active1(16) -> 6*
nil1() -> 15*
tt1() -> 15*
01() -> 16*
zeros1() -> 15*
mark1(17) -> 5*
cons1(16,15) -> 17*
active2(27) -> 5*
active2(19) -> 26*
cons2(19,18) -> 20*
cons2(26,15) -> 27*
mark2(20) -> 6*
mark2(16) -> 26*
02() -> 19*
zeros2() -> 18*
active0(2) -> 5*
active0(4) -> 5*
active0(1) -> 5*
active0(3) -> 5*
cons3(28,18) -> 29*
cons3(19,15) -> 27*
cons3(16,15) -> 27*
zeros0() -> 1*
active3(29) -> 6*
active3(33) -> 28*
mark0(2) -> 6*
mark0(4) -> 6*
mark0(1) -> 6*
mark0(3) -> 6*
mark3(19) -> 28*
cons0(3,1) -> 7*
cons0(3,3) -> 7*
cons0(4,2) -> 7*
cons0(4,4) -> 7*
cons0(1,2) -> 7*
cons0(1,4) -> 7*
cons0(2,1) -> 7*
cons0(2,3) -> 7*
cons0(3,2) -> 7*
cons0(3,4) -> 7*
cons0(4,1) -> 7*
cons0(4,3) -> 7*
cons0(1,1) -> 7*
cons0(1,3) -> 7*
cons0(2,2) -> 7*
cons0(2,4) -> 7*
cons4(19,18) -> 29*
cons4(33,18) -> 29*
00() -> 2*
03() -> 33*
and0(3,1) -> 8*
and0(3,3) -> 8*
and0(4,2) -> 8*
and0(4,4) -> 8*
and0(1,2) -> 8*
and0(1,4) -> 8*
and0(2,1) -> 8*
and0(2,3) -> 8*
and0(3,2) -> 8*
and0(3,4) -> 8*
and0(4,1) -> 8*
and0(4,3) -> 8*
and0(1,1) -> 8*
and0(1,3) -> 8*
and0(2,2) -> 8*
and0(2,4) -> 8*
tt0() -> 3*
length0(2) -> 9*
length0(4) -> 9*
length0(1) -> 9*
length0(3) -> 9*
nil0() -> 4*
s0(2) -> 10*
s0(4) -> 10*
s0(1) -> 10*
s0(3) -> 10*
take0(3,1) -> 11*
take0(3,3) -> 11*
take0(4,2) -> 11*
take0(4,4) -> 11*
take0(1,2) -> 11*
take0(1,4) -> 11*
take0(2,1) -> 11*
take0(2,3) -> 11*
take0(3,2) -> 11*
take0(3,4) -> 11*
take0(4,1) -> 11*
take0(4,3) -> 11*
take0(1,1) -> 11*
take0(1,3) -> 11*
take0(2,2) -> 11*
take0(2,4) -> 11*
problem:
Qed