We consider the following Problem:

  Strict Trs:
    {  U11(tt(), N) -> activate(N)
     , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
     , U31(tt()) -> 0()
     , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
     , and(tt(), X) -> activate(X)
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) ->
       and(isNat(activate(V1)), n__isNat(activate(V2)))
     , isNat(n__s(V1)) -> isNat(activate(V1))
     , isNat(n__x(V1, V2)) ->
       and(isNat(activate(V1)), n__isNat(activate(V2)))
     , plus(N, 0()) -> U11(isNat(N), N)
     , plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N)
     , x(N, 0()) -> U31(isNat(N))
     , x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N)
     , 0() -> n__0()
     , plus(X1, X2) -> n__plus(X1, X2)
     , isNat(X) -> n__isNat(X)
     , s(X) -> n__s(X)
     , x(X1, X2) -> n__x(X1, X2)
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__isNat(X)) -> isNat(X)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  Arguments of following rules are not normal-forms:
  {  plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N)
   , x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N)
   , plus(N, 0()) -> U11(isNat(N), N)
   , x(N, 0()) -> U31(isNat(N))}
  
  All above mentioned rules can be savely removed.
  
  We consider the following Problem:
  
    Strict Trs:
      {  U11(tt(), N) -> activate(N)
       , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
       , U31(tt()) -> 0()
       , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
       , and(tt(), X) -> activate(X)
       , isNat(n__0()) -> tt()
       , isNat(n__plus(V1, V2)) ->
         and(isNat(activate(V1)), n__isNat(activate(V2)))
       , isNat(n__s(V1)) -> isNat(activate(V1))
       , isNat(n__x(V1, V2)) ->
         and(isNat(activate(V1)), n__isNat(activate(V2)))
       , 0() -> n__0()
       , plus(X1, X2) -> n__plus(X1, X2)
       , isNat(X) -> n__isNat(X)
       , s(X) -> n__s(X)
       , x(X1, X2) -> n__x(X1, X2)
       , activate(n__0()) -> 0()
       , activate(n__plus(X1, X2)) -> plus(X1, X2)
       , activate(n__isNat(X)) -> isNat(X)
       , activate(n__s(X)) -> s(X)
       , activate(n__x(X1, X2)) -> x(X1, X2)
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    We consider the following Problem:
    
      Strict Trs:
        {  U11(tt(), N) -> activate(N)
         , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
         , U31(tt()) -> 0()
         , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
         , and(tt(), X) -> activate(X)
         , isNat(n__0()) -> tt()
         , isNat(n__plus(V1, V2)) ->
           and(isNat(activate(V1)), n__isNat(activate(V2)))
         , isNat(n__s(V1)) -> isNat(activate(V1))
         , isNat(n__x(V1, V2)) ->
           and(isNat(activate(V1)), n__isNat(activate(V2)))
         , 0() -> n__0()
         , plus(X1, X2) -> n__plus(X1, X2)
         , isNat(X) -> n__isNat(X)
         , s(X) -> n__s(X)
         , x(X1, X2) -> n__x(X1, X2)
         , activate(n__0()) -> 0()
         , activate(n__plus(X1, X2)) -> plus(X1, X2)
         , activate(n__isNat(X)) -> isNat(X)
         , activate(n__s(X)) -> s(X)
         , activate(n__x(X1, X2)) -> x(X1, X2)
         , activate(X) -> X}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      We have computed the following dependency pairs
      
        Strict DPs:
          {  U11^#(tt(), N) -> activate^#(N)
           , U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
           , U31^#(tt()) -> 0^#()
           , U41^#(tt(), M, N) ->
             plus^#(x(activate(N), activate(M)), activate(N))
           , and^#(tt(), X) -> activate^#(X)
           , isNat^#(n__0()) -> c_6()
           , isNat^#(n__plus(V1, V2)) ->
             and^#(isNat(activate(V1)), n__isNat(activate(V2)))
           , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
           , isNat^#(n__x(V1, V2)) ->
             and^#(isNat(activate(V1)), n__isNat(activate(V2)))
           , 0^#() -> c_10()
           , plus^#(X1, X2) -> c_11()
           , isNat^#(X) -> c_12()
           , s^#(X) -> c_13()
           , x^#(X1, X2) -> c_14()
           , activate^#(n__0()) -> 0^#()
           , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
           , activate^#(n__isNat(X)) -> isNat^#(X)
           , activate^#(n__s(X)) -> s^#(X)
           , activate^#(n__x(X1, X2)) -> x^#(X1, X2)
           , activate^#(X) -> c_20()}
      
      We consider the following Problem:
      
        Strict DPs:
          {  U11^#(tt(), N) -> activate^#(N)
           , U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
           , U31^#(tt()) -> 0^#()
           , U41^#(tt(), M, N) ->
             plus^#(x(activate(N), activate(M)), activate(N))
           , and^#(tt(), X) -> activate^#(X)
           , isNat^#(n__0()) -> c_6()
           , isNat^#(n__plus(V1, V2)) ->
             and^#(isNat(activate(V1)), n__isNat(activate(V2)))
           , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
           , isNat^#(n__x(V1, V2)) ->
             and^#(isNat(activate(V1)), n__isNat(activate(V2)))
           , 0^#() -> c_10()
           , plus^#(X1, X2) -> c_11()
           , isNat^#(X) -> c_12()
           , s^#(X) -> c_13()
           , x^#(X1, X2) -> c_14()
           , activate^#(n__0()) -> 0^#()
           , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
           , activate^#(n__isNat(X)) -> isNat^#(X)
           , activate^#(n__s(X)) -> s^#(X)
           , activate^#(n__x(X1, X2)) -> x^#(X1, X2)
           , activate^#(X) -> c_20()}
        Strict Trs:
          {  U11(tt(), N) -> activate(N)
           , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
           , U31(tt()) -> 0()
           , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
           , and(tt(), X) -> activate(X)
           , isNat(n__0()) -> tt()
           , isNat(n__plus(V1, V2)) ->
             and(isNat(activate(V1)), n__isNat(activate(V2)))
           , isNat(n__s(V1)) -> isNat(activate(V1))
           , isNat(n__x(V1, V2)) ->
             and(isNat(activate(V1)), n__isNat(activate(V2)))
           , 0() -> n__0()
           , plus(X1, X2) -> n__plus(X1, X2)
           , isNat(X) -> n__isNat(X)
           , s(X) -> n__s(X)
           , x(X1, X2) -> n__x(X1, X2)
           , activate(n__0()) -> 0()
           , activate(n__plus(X1, X2)) -> plus(X1, X2)
           , activate(n__isNat(X)) -> isNat(X)
           , activate(n__s(X)) -> s(X)
           , activate(n__x(X1, X2)) -> x(X1, X2)
           , activate(X) -> X}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        We replace strict/weak-rules by the corresponding usable rules:
        
          Strict Usable Rules:
            {  and(tt(), X) -> activate(X)
             , isNat(n__0()) -> tt()
             , isNat(n__plus(V1, V2)) ->
               and(isNat(activate(V1)), n__isNat(activate(V2)))
             , isNat(n__s(V1)) -> isNat(activate(V1))
             , isNat(n__x(V1, V2)) ->
               and(isNat(activate(V1)), n__isNat(activate(V2)))
             , 0() -> n__0()
             , plus(X1, X2) -> n__plus(X1, X2)
             , isNat(X) -> n__isNat(X)
             , s(X) -> n__s(X)
             , x(X1, X2) -> n__x(X1, X2)
             , activate(n__0()) -> 0()
             , activate(n__plus(X1, X2)) -> plus(X1, X2)
             , activate(n__isNat(X)) -> isNat(X)
             , activate(n__s(X)) -> s(X)
             , activate(n__x(X1, X2)) -> x(X1, X2)
             , activate(X) -> X}
        
        We consider the following Problem:
        
          Strict DPs:
            {  U11^#(tt(), N) -> activate^#(N)
             , U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
             , U31^#(tt()) -> 0^#()
             , U41^#(tt(), M, N) ->
               plus^#(x(activate(N), activate(M)), activate(N))
             , and^#(tt(), X) -> activate^#(X)
             , isNat^#(n__0()) -> c_6()
             , isNat^#(n__plus(V1, V2)) ->
               and^#(isNat(activate(V1)), n__isNat(activate(V2)))
             , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
             , isNat^#(n__x(V1, V2)) ->
               and^#(isNat(activate(V1)), n__isNat(activate(V2)))
             , 0^#() -> c_10()
             , plus^#(X1, X2) -> c_11()
             , isNat^#(X) -> c_12()
             , s^#(X) -> c_13()
             , x^#(X1, X2) -> c_14()
             , activate^#(n__0()) -> 0^#()
             , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
             , activate^#(n__isNat(X)) -> isNat^#(X)
             , activate^#(n__s(X)) -> s^#(X)
             , activate^#(n__x(X1, X2)) -> x^#(X1, X2)
             , activate^#(X) -> c_20()}
          Strict Trs:
            {  and(tt(), X) -> activate(X)
             , isNat(n__0()) -> tt()
             , isNat(n__plus(V1, V2)) ->
               and(isNat(activate(V1)), n__isNat(activate(V2)))
             , isNat(n__s(V1)) -> isNat(activate(V1))
             , isNat(n__x(V1, V2)) ->
               and(isNat(activate(V1)), n__isNat(activate(V2)))
             , 0() -> n__0()
             , plus(X1, X2) -> n__plus(X1, X2)
             , isNat(X) -> n__isNat(X)
             , s(X) -> n__s(X)
             , x(X1, X2) -> n__x(X1, X2)
             , activate(n__0()) -> 0()
             , activate(n__plus(X1, X2)) -> plus(X1, X2)
             , activate(n__isNat(X)) -> isNat(X)
             , activate(n__s(X)) -> s(X)
             , activate(n__x(X1, X2)) -> x(X1, X2)
             , activate(X) -> X}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          Dependency Pairs:
            {  and^#(tt(), X) -> activate^#(X)
             , isNat^#(n__0()) -> c_6()
             , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
             , isNat^#(n__x(V1, V2)) ->
               and^#(isNat(activate(V1)), n__isNat(activate(V2)))
             , activate^#(n__0()) -> 0^#()
             , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
             , activate^#(n__s(X)) -> s^#(X)
             , activate^#(n__x(X1, X2)) -> x^#(X1, X2)}
          TRS Component:
            {  and(tt(), X) -> activate(X)
             , isNat(n__0()) -> tt()
             , isNat(n__plus(V1, V2)) ->
               and(isNat(activate(V1)), n__isNat(activate(V2)))
             , isNat(n__s(V1)) -> isNat(activate(V1))
             , isNat(n__x(V1, V2)) ->
               and(isNat(activate(V1)), n__isNat(activate(V2)))
             , 0() -> n__0()
             , plus(X1, X2) -> n__plus(X1, X2)
             , isNat(X) -> n__isNat(X)
             , s(X) -> n__s(X)
             , x(X1, X2) -> n__x(X1, X2)
             , activate(n__0()) -> 0()
             , activate(n__plus(X1, X2)) -> plus(X1, X2)
             , activate(n__isNat(X)) -> isNat(X)
             , activate(n__s(X)) -> s(X)
             , activate(n__x(X1, X2)) -> x(X1, X2)
             , activate(X) -> X}
          
          Interpretation of constant growth:
          ----------------------------------
            The following argument positions are usable:
              Uargs(U11) = {}, Uargs(activate) = {}, Uargs(U21) = {},
              Uargs(s) = {}, Uargs(plus) = {1, 2}, Uargs(U31) = {},
              Uargs(U41) = {}, Uargs(x) = {1, 2}, Uargs(and) = {1, 2},
              Uargs(isNat) = {1}, Uargs(n__plus) = {}, Uargs(n__isNat) = {1},
              Uargs(n__s) = {}, Uargs(n__x) = {}, Uargs(U11^#) = {},
              Uargs(activate^#) = {}, Uargs(U21^#) = {}, Uargs(s^#) = {1},
              Uargs(U31^#) = {}, Uargs(U41^#) = {}, Uargs(plus^#) = {1, 2},
              Uargs(and^#) = {1, 2}, Uargs(isNat^#) = {1}, Uargs(x^#) = {}
            We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             U11(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
             tt() = [3]
                    [0]
             activate(x1) = [1 0] x1 + [2]
                            [0 1]      [0]
             U21(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                               [0 0]      [0 0]      [0 0]      [0]
             s(x1) = [1 0] x1 + [3]
                     [0 1]      [2]
             plus(x1, x2) = [1 3] x1 + [1 2] x2 + [2]
                            [0 0]      [0 0]      [2]
             U31(x1) = [0 0] x1 + [0]
                       [0 0]      [0]
             0() = [2]
                   [2]
             U41(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                               [0 0]      [0 0]      [0 0]      [0]
             x(x1, x2) = [1 2] x1 + [1 0] x2 + [3]
                         [0 0]      [0 1]      [2]
             and(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                           [0 0]      [0 2]      [0]
             isNat(x1) = [1 2] x1 + [1]
                         [0 0]      [0]
             n__0() = [1]
                      [2]
             n__plus(x1, x2) = [1 3] x1 + [1 2] x2 + [1]
                               [0 0]      [0 0]      [2]
             n__isNat(x1) = [1 2] x1 + [0]
                            [0 0]      [0]
             n__s(x1) = [1 0] x1 + [2]
                        [0 1]      [2]
             n__x(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
                            [0 0]      [0 1]      [2]
             U11^#(x1, x2) = [0 0] x1 + [2 0] x2 + [0]
                             [0 0]      [0 0]      [0]
             activate^#(x1) = [1 0] x1 + [0]
                              [0 0]      [0]
             U21^#(x1, x2, x3) = [0 0] x1 + [2 2] x2 + [2 3] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
             s^#(x1) = [1 0] x1 + [0]
                       [0 0]      [0]
             U31^#(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
             0^#() = [0]
                     [0]
             U41^#(x1, x2, x3) = [0 0] x1 + [2 0] x2 + [2 2] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
             plus^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [0]
             and^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                             [0 0]      [0 0]      [0]
             isNat^#(x1) = [1 2] x1 + [0]
                           [0 0]      [0]
             c_6() = [0]
                     [0]
             c_10() = [0]
                      [0]
             c_11() = [0]
                      [0]
             c_12() = [0]
                      [0]
             c_13() = [0]
                      [0]
             x^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
             c_14() = [0]
                      [0]
             c_20() = [0]
                      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict DPs:
              {  U11^#(tt(), N) -> activate^#(N)
               , U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
               , U31^#(tt()) -> 0^#()
               , U41^#(tt(), M, N) ->
                 plus^#(x(activate(N), activate(M)), activate(N))
               , isNat^#(n__plus(V1, V2)) ->
                 and^#(isNat(activate(V1)), n__isNat(activate(V2)))
               , 0^#() -> c_10()
               , plus^#(X1, X2) -> c_11()
               , isNat^#(X) -> c_12()
               , s^#(X) -> c_13()
               , x^#(X1, X2) -> c_14()
               , activate^#(n__isNat(X)) -> isNat^#(X)
               , activate^#(X) -> c_20()}
            Weak DPs:
              {  and^#(tt(), X) -> activate^#(X)
               , isNat^#(n__0()) -> c_6()
               , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
               , isNat^#(n__x(V1, V2)) ->
                 and^#(isNat(activate(V1)), n__isNat(activate(V2)))
               , activate^#(n__0()) -> 0^#()
               , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
               , activate^#(n__s(X)) -> s^#(X)
               , activate^#(n__x(X1, X2)) -> x^#(X1, X2)}
            Weak Trs:
              {  and(tt(), X) -> activate(X)
               , isNat(n__0()) -> tt()
               , isNat(n__plus(V1, V2)) ->
                 and(isNat(activate(V1)), n__isNat(activate(V2)))
               , isNat(n__s(V1)) -> isNat(activate(V1))
               , isNat(n__x(V1, V2)) ->
                 and(isNat(activate(V1)), n__isNat(activate(V2)))
               , 0() -> n__0()
               , plus(X1, X2) -> n__plus(X1, X2)
               , isNat(X) -> n__isNat(X)
               , s(X) -> n__s(X)
               , x(X1, X2) -> n__x(X1, X2)
               , activate(n__0()) -> 0()
               , activate(n__plus(X1, X2)) -> plus(X1, X2)
               , activate(n__isNat(X)) -> isNat(X)
               , activate(n__s(X)) -> s(X)
               , activate(n__x(X1, X2)) -> x(X1, X2)
               , activate(X) -> X}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            We use following congruence DG for path analysis
            
            ->4:{1}                                                     [   YES(O(1),O(1))   ]
               |
               |->5:{11,13,16,15,5}                                     [   YES(O(1),O(1))   ]
               |   |
               |   |->6:{8}                                             [   YES(O(1),O(1))   ]
               |   |
               |   |->8:{12}                                            [   YES(O(1),O(1))   ]
               |   |
               |   |->7:{14}                                            [   YES(O(1),O(1))   ]
               |   |
               |   |->9:{17}                                            [      subsumed      ]
               |   |   |
               |   |   `->10:{6}                                        [   YES(O(1),O(1))   ]
               |   |
               |   |->11:{18}                                           [      subsumed      ]
               |   |   |
               |   |   `->12:{7}                                        [   YES(O(1),O(1))   ]
               |   |
               |   |->13:{19}                                           [      subsumed      ]
               |   |   |
               |   |   `->14:{9}                                        [   YES(O(1),O(1))   ]
               |   |
               |   `->15:{20}                                           [      subsumed      ]
               |       |
               |       `->16:{10}                                       [   YES(O(1),O(1))   ]
               |
               |->8:{12}                                                [   YES(O(1),O(1))   ]
               |
               |->9:{17}                                                [      subsumed      ]
               |   |
               |   `->10:{6}                                            [   YES(O(1),O(1))   ]
               |
               |->11:{18}                                               [      subsumed      ]
               |   |
               |   `->12:{7}                                            [   YES(O(1),O(1))   ]
               |
               |->13:{19}                                               [      subsumed      ]
               |   |
               |   `->14:{9}                                            [   YES(O(1),O(1))   ]
               |
               `->15:{20}                                               [      subsumed      ]
                   |
                   `->16:{10}                                           [   YES(O(1),O(1))   ]
            
            ->3:{2}                                                     [   YES(O(1),O(1))   ]
               |
               `->14:{9}                                                [   YES(O(1),O(1))   ]
            
            ->2:{3}                                                     [   YES(O(1),O(1))   ]
               |
               `->10:{6}                                                [   YES(O(1),O(1))   ]
            
            ->1:{4}                                                     [   YES(O(1),O(1))   ]
               |
               `->12:{7}                                                [   YES(O(1),O(1))   ]
            
            
            Here dependency-pairs are as follows:
            
            Strict DPs:
              {  1: U11^#(tt(), N) -> activate^#(N)
               , 2: U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
               , 3: U31^#(tt()) -> 0^#()
               , 4: U41^#(tt(), M, N) ->
                    plus^#(x(activate(N), activate(M)), activate(N))
               , 5: isNat^#(n__plus(V1, V2)) ->
                    and^#(isNat(activate(V1)), n__isNat(activate(V2)))
               , 6: 0^#() -> c_10()
               , 7: plus^#(X1, X2) -> c_11()
               , 8: isNat^#(X) -> c_12()
               , 9: s^#(X) -> c_13()
               , 10: x^#(X1, X2) -> c_14()
               , 11: activate^#(n__isNat(X)) -> isNat^#(X)
               , 12: activate^#(X) -> c_20()}
            WeakDPs DPs:
              {  13: and^#(tt(), X) -> activate^#(X)
               , 14: isNat^#(n__0()) -> c_6()
               , 15: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
               , 16: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
               , 17: activate^#(n__0()) -> 0^#()
               , 18: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
               , 19: activate^#(n__s(X)) -> s^#(X)
               , 20: activate^#(n__x(X1, X2)) -> x^#(X1, X2)}
            
            * Path 4:{1}: YES(O(1),O(1))
              --------------------------
              
              We consider the following Problem:
              
                Strict DPs: {U11^#(tt(), N) -> activate^#(N)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: U11^#(tt(), N) -> activate^#(N)
                  
                
                together with the congruence-graph
                
                  ->1:{1}                                                     Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: U11^#(tt(), N) -> activate^#(N)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {1: U11^#(tt(), N) -> activate^#(N)}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}: YES(O(1),O(1))
              ---------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs:
                  {  activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                Weak DPs: {U11^#(tt(), N) -> activate^#(N)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :2
                  
                  2: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                  
                  3: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :1
                  
                
                together with the congruence-graph
                
                  ->1:{3}                                                     Weak SCC
                     |
                     `->2:{1}                                                 Noncyclic, trivial, SCC
                         |
                         `->3:{2}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {  1: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 2: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                  WeakDPs DPs:
                    {3: U11^#(tt(), N) -> activate^#(N)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  3: U11^#(tt(), N) -> activate^#(N)
                   , 1: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 2: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->6:{8}: YES(O(1),O(1))
              ----------------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {isNat^#(X) -> c_12()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: isNat^#(X) -> c_12()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  3: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  4: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                     -->_1 isNat^#(X) -> c_12() :1
                  
                  6: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                     -->_1 isNat^#(X) -> c_12() :1
                  
                  7: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{6,3,7,5,4}                                         Weak SCC
                         |
                         `->3:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: isNat^#(X) -> c_12()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: and^#(tt(), X) -> activate^#(X)
                     , 4: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 7: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 3: and^#(tt(), X) -> activate^#(X)
                   , 7: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 4: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 1: isNat^#(X) -> c_12()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->6:{8}: YES(O(1),O(1))
              ----------------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {isNat^#(X) -> c_12()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: isNat^#(X) -> c_12()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  3: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  4: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                     -->_1 isNat^#(X) -> c_12() :1
                  
                  6: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                     -->_1 isNat^#(X) -> c_12() :1
                  
                  7: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{6,3,7,5,4}                                         Weak SCC
                         |
                         `->3:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: isNat^#(X) -> c_12()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: and^#(tt(), X) -> activate^#(X)
                     , 4: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 7: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 3: and^#(tt(), X) -> activate^#(X)
                   , 7: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 4: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 1: isNat^#(X) -> c_12()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->8:{12}: YES(O(1),O(1))
              -----------------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {activate^#(X) -> c_20()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: activate^#(X) -> c_20()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                     -->_1 activate^#(X) -> c_20() :1
                  
                  3: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                     -->_1 activate^#(X) -> c_20() :1
                  
                  4: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  6: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  7: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     |->3:{1}                                                 Noncyclic, trivial, SCC
                     |
                     `->2:{6,3,7,5,4}                                         Weak SCC
                         |
                         `->3:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: activate^#(X) -> c_20()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: and^#(tt(), X) -> activate^#(X)
                     , 4: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 7: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 3: and^#(tt(), X) -> activate^#(X)
                   , 7: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 4: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 1: activate^#(X) -> c_20()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->7:{14}: YES(O(1),O(1))
              -----------------------------------------------------
              
              We consider the following Problem:
              
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :5
                  
                  2: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :5
                  
                  3: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :2
                  
                  4: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :6
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :4
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :3
                  
                  5: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :6
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :4
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :3
                  
                  6: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :2
                  
                
                together with the congruence-graph
                
                  ->1:{1}                                                     Weak SCC
                     |
                     `->2:{5,2,6,4,3}                                         Weak SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  WeakDPs DPs:
                    {  1: U11^#(tt(), N) -> activate^#(N)
                     , 2: and^#(tt(), X) -> activate^#(X)
                     , 3: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 4: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 5: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 6: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  1: U11^#(tt(), N) -> activate^#(N)
                   , 5: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 2: and^#(tt(), X) -> activate^#(X)
                   , 6: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 4: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 3: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->7:{14}: YES(O(1),O(1))
              -----------------------------------------------------
              
              We consider the following Problem:
              
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :5
                  
                  2: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :5
                  
                  3: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :2
                  
                  4: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :6
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :4
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :3
                  
                  5: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :6
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :4
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :3
                  
                  6: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :2
                  
                
                together with the congruence-graph
                
                  ->1:{1}                                                     Weak SCC
                     |
                     `->2:{5,2,6,4,3}                                         Weak SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  WeakDPs DPs:
                    {  1: U11^#(tt(), N) -> activate^#(N)
                     , 2: and^#(tt(), X) -> activate^#(X)
                     , 3: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 4: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 5: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 6: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  1: U11^#(tt(), N) -> activate^#(N)
                   , 5: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 2: and^#(tt(), X) -> activate^#(X)
                   , 6: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 4: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 3: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->9:{17}: subsumed
              -----------------------------------------------
              
              This path is subsumed by the proof of paths 4:{1}->5:{11,13,16,15,5}->9:{17}->10:{6}.
            
            * Path 4:{1}->5:{11,13,16,15,5}->9:{17}->10:{6}: YES(O(1),O(1))
              -------------------------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {0^#() -> c_10()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , activate^#(n__0()) -> 0^#()}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: 0^#() -> c_10()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__0()) -> 0^#() :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  3: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__0()) -> 0^#() :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  4: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  6: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  7: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  8: activate^#(n__0()) -> 0^#() -->_1 0^#() -> c_10() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     |->2:{6,3,7,5,4}                                         Weak SCC
                     |   |
                     |   `->3:{8}                                             Weak SCC
                     |       |
                     |       `->4:{1}                                         Noncyclic, trivial, SCC
                     |
                     `->3:{8}                                                 Weak SCC
                         |
                         `->4:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: 0^#() -> c_10()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: and^#(tt(), X) -> activate^#(X)
                     , 4: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 7: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 8: activate^#(n__0()) -> 0^#()}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 3: and^#(tt(), X) -> activate^#(X)
                   , 7: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 4: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 8: activate^#(n__0()) -> 0^#()
                   , 1: 0^#() -> c_10()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->11:{18}: subsumed
              ------------------------------------------------
              
              This path is subsumed by the proof of paths 4:{1}->5:{11,13,16,15,5}->11:{18}->12:{7}.
            
            * Path 4:{1}->5:{11,13,16,15,5}->11:{18}->12:{7}: YES(O(1),O(1))
              --------------------------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {plus^#(X1, X2) -> c_11()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: plus^#(X1, X2) -> c_11()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  3: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  4: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  6: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  7: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  8: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
                     -->_1 plus^#(X1, X2) -> c_11() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     |->2:{6,3,7,5,4}                                         Weak SCC
                     |   |
                     |   `->3:{8}                                             Weak SCC
                     |       |
                     |       `->4:{1}                                         Noncyclic, trivial, SCC
                     |
                     `->3:{8}                                                 Weak SCC
                         |
                         `->4:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: plus^#(X1, X2) -> c_11()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: and^#(tt(), X) -> activate^#(X)
                     , 4: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 7: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 8: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 3: and^#(tt(), X) -> activate^#(X)
                   , 7: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 4: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 8: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
                   , 1: plus^#(X1, X2) -> c_11()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->13:{19}: subsumed
              ------------------------------------------------
              
              This path is subsumed by the proof of paths 4:{1}->5:{11,13,16,15,5}->13:{19}->14:{9}.
            
            * Path 4:{1}->5:{11,13,16,15,5}->13:{19}->14:{9}: YES(O(1),O(1))
              --------------------------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {s^#(X) -> c_13()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , activate^#(n__s(X)) -> s^#(X)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: s^#(X) -> c_13()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__s(X)) -> s^#(X) :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  3: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__s(X)) -> s^#(X) :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  4: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  6: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  7: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  8: activate^#(n__s(X)) -> s^#(X) -->_1 s^#(X) -> c_13() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     |->2:{6,3,7,5,4}                                         Weak SCC
                     |   |
                     |   `->3:{8}                                             Weak SCC
                     |       |
                     |       `->4:{1}                                         Noncyclic, trivial, SCC
                     |
                     `->3:{8}                                                 Weak SCC
                         |
                         `->4:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: s^#(X) -> c_13()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: and^#(tt(), X) -> activate^#(X)
                     , 4: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 7: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 8: activate^#(n__s(X)) -> s^#(X)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 3: and^#(tt(), X) -> activate^#(X)
                   , 7: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 4: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 8: activate^#(n__s(X)) -> s^#(X)
                   , 1: s^#(X) -> c_13()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->5:{11,13,16,15,5}->15:{20}: subsumed
              ------------------------------------------------
              
              This path is subsumed by the proof of paths 4:{1}->5:{11,13,16,15,5}->15:{20}->16:{10}.
            
            * Path 4:{1}->5:{11,13,16,15,5}->15:{20}->16:{10}: YES(O(1),O(1))
              ---------------------------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {x^#(X1, X2) -> c_14()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , and^#(tt(), X) -> activate^#(X)
                   , isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , activate^#(n__isNat(X)) -> isNat^#(X)
                   , isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , activate^#(n__x(X1, X2)) -> x^#(X1, X2)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: x^#(X1, X2) -> c_14()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__x(X1, X2)) -> x^#(X1, X2) :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  3: and^#(tt(), X) -> activate^#(X)
                     -->_1 activate^#(n__x(X1, X2)) -> x^#(X1, X2) :8
                     -->_1 activate^#(n__isNat(X)) -> isNat^#(X) :6
                  
                  4: isNat^#(n__x(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  6: activate^#(n__isNat(X)) -> isNat^#(X)
                     -->_1 isNat^#(n__plus(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :7
                     -->_1 isNat^#(n__s(V1)) -> isNat^#(activate(V1)) :5
                     -->_1 isNat^#(n__x(V1, V2)) ->
                           and^#(isNat(activate(V1)), n__isNat(activate(V2))) :4
                  
                  7: isNat^#(n__plus(V1, V2)) ->
                     and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     -->_1 and^#(tt(), X) -> activate^#(X) :3
                  
                  8: activate^#(n__x(X1, X2)) -> x^#(X1, X2)
                     -->_1 x^#(X1, X2) -> c_14() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     |->2:{6,3,7,5,4}                                         Weak SCC
                     |   |
                     |   `->3:{8}                                             Weak SCC
                     |       |
                     |       `->4:{1}                                         Noncyclic, trivial, SCC
                     |
                     `->3:{8}                                                 Weak SCC
                         |
                         `->4:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: x^#(X1, X2) -> c_14()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: and^#(tt(), X) -> activate^#(X)
                     , 4: isNat^#(n__x(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                     , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                     , 7: isNat^#(n__plus(V1, V2)) ->
                          and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 8: activate^#(n__x(X1, X2)) -> x^#(X1, X2)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 6: activate^#(n__isNat(X)) -> isNat^#(X)
                   , 3: and^#(tt(), X) -> activate^#(X)
                   , 7: isNat^#(n__plus(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 5: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
                   , 4: isNat^#(n__x(V1, V2)) ->
                        and^#(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 8: activate^#(n__x(X1, X2)) -> x^#(X1, X2)
                   , 1: x^#(X1, X2) -> c_14()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->8:{12}: YES(O(1),O(1))
              ----------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {activate^#(X) -> c_20()}
                Weak DPs: {U11^#(tt(), N) -> activate^#(N)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: activate^#(X) -> c_20()
                  
                  2: U11^#(tt(), N) -> activate^#(N) -->_1 activate^#(X) -> c_20() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{1}                                                 Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: activate^#(X) -> c_20()}
                  WeakDPs DPs:
                    {2: U11^#(tt(), N) -> activate^#(N)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 1: activate^#(X) -> c_20()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->9:{17}: subsumed
              ----------------------------
              
              This path is subsumed by the proof of paths 4:{1}->9:{17}->10:{6}.
            
            * Path 4:{1}->9:{17}->10:{6}: YES(O(1),O(1))
              ------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {0^#() -> c_10()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , activate^#(n__0()) -> 0^#()}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: 0^#() -> c_10()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__0()) -> 0^#() :3
                  
                  3: activate^#(n__0()) -> 0^#() -->_1 0^#() -> c_10() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{3}                                                 Weak SCC
                         |
                         `->3:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: 0^#() -> c_10()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: activate^#(n__0()) -> 0^#()}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 3: activate^#(n__0()) -> 0^#()
                   , 1: 0^#() -> c_10()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->11:{18}: subsumed
              -----------------------------
              
              This path is subsumed by the proof of paths 4:{1}->11:{18}->12:{7}.
            
            * Path 4:{1}->11:{18}->12:{7}: YES(O(1),O(1))
              -------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {plus^#(X1, X2) -> c_11()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: plus^#(X1, X2) -> c_11()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) :3
                  
                  3: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
                     -->_1 plus^#(X1, X2) -> c_11() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{3}                                                 Weak SCC
                         |
                         `->3:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: plus^#(X1, X2) -> c_11()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 3: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)
                   , 1: plus^#(X1, X2) -> c_11()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->13:{19}: subsumed
              -----------------------------
              
              This path is subsumed by the proof of paths 4:{1}->13:{19}->14:{9}.
            
            * Path 4:{1}->13:{19}->14:{9}: YES(O(1),O(1))
              -------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {s^#(X) -> c_13()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , activate^#(n__s(X)) -> s^#(X)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: s^#(X) -> c_13()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__s(X)) -> s^#(X) :3
                  
                  3: activate^#(n__s(X)) -> s^#(X) -->_1 s^#(X) -> c_13() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{3}                                                 Weak SCC
                         |
                         `->3:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: s^#(X) -> c_13()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: activate^#(n__s(X)) -> s^#(X)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 3: activate^#(n__s(X)) -> s^#(X)
                   , 1: s^#(X) -> c_13()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 4:{1}->15:{20}: subsumed
              -----------------------------
              
              This path is subsumed by the proof of paths 4:{1}->15:{20}->16:{10}.
            
            * Path 4:{1}->15:{20}->16:{10}: YES(O(1),O(1))
              --------------------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {x^#(X1, X2) -> c_14()}
                Weak DPs:
                  {  U11^#(tt(), N) -> activate^#(N)
                   , activate^#(n__x(X1, X2)) -> x^#(X1, X2)}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: x^#(X1, X2) -> c_14()
                  
                  2: U11^#(tt(), N) -> activate^#(N)
                     -->_1 activate^#(n__x(X1, X2)) -> x^#(X1, X2) :3
                  
                  3: activate^#(n__x(X1, X2)) -> x^#(X1, X2)
                     -->_1 x^#(X1, X2) -> c_14() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{3}                                                 Weak SCC
                         |
                         `->3:{1}                                             Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: x^#(X1, X2) -> c_14()}
                  WeakDPs DPs:
                    {  2: U11^#(tt(), N) -> activate^#(N)
                     , 3: activate^#(n__x(X1, X2)) -> x^#(X1, X2)}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U11^#(tt(), N) -> activate^#(N)
                   , 3: activate^#(n__x(X1, X2)) -> x^#(X1, X2)
                   , 1: x^#(X1, X2) -> c_14()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 3:{2}: YES(O(1),O(1))
              --------------------------
              
              We consider the following Problem:
              
                Strict DPs:
                  {U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
                  
                
                together with the congruence-graph
                
                  ->1:{1}                                                     Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {1: U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 3:{2}->14:{9}: YES(O(1),O(1))
              ----------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {s^#(X) -> c_13()}
                Weak DPs:
                  {U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: s^#(X) -> c_13()
                  
                  2: U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
                     -->_1 s^#(X) -> c_13() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{1}                                                 Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: s^#(X) -> c_13()}
                  WeakDPs DPs:
                    {2: U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U21^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))
                   , 1: s^#(X) -> c_13()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 2:{3}: YES(O(1),O(1))
              --------------------------
              
              We consider the following Problem:
              
                Strict DPs: {U31^#(tt()) -> 0^#()}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: U31^#(tt()) -> 0^#()
                  
                
                together with the congruence-graph
                
                  ->1:{1}                                                     Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: U31^#(tt()) -> 0^#()}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {1: U31^#(tt()) -> 0^#()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 2:{3}->10:{6}: YES(O(1),O(1))
              ----------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {0^#() -> c_10()}
                Weak DPs: {U31^#(tt()) -> 0^#()}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: 0^#() -> c_10()
                  
                  2: U31^#(tt()) -> 0^#() -->_1 0^#() -> c_10() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{1}                                                 Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: 0^#() -> c_10()}
                  WeakDPs DPs:
                    {2: U31^#(tt()) -> 0^#()}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U31^#(tt()) -> 0^#()
                   , 1: 0^#() -> c_10()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 1:{4}: YES(O(1),O(1))
              --------------------------
              
              We consider the following Problem:
              
                Strict DPs:
                  {U41^#(tt(), M, N) ->
                   plus^#(x(activate(N), activate(M)), activate(N))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: U41^#(tt(), M, N) ->
                     plus^#(x(activate(N), activate(M)), activate(N))
                  
                
                together with the congruence-graph
                
                  ->1:{1}                                                     Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: U41^#(tt(), M, N) ->
                        plus^#(x(activate(N), activate(M)), activate(N))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {1: U41^#(tt(), M, N) ->
                      plus^#(x(activate(N), activate(M)), activate(N))}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded
            
            * Path 1:{4}->12:{7}: YES(O(1),O(1))
              ----------------------------------
              
              We consider the following Problem:
              
                Strict DPs: {plus^#(X1, X2) -> c_11()}
                Weak DPs:
                  {U41^#(tt(), M, N) ->
                   plus^#(x(activate(N), activate(M)), activate(N))}
                Weak Trs:
                  {  and(tt(), X) -> activate(X)
                   , isNat(n__0()) -> tt()
                   , isNat(n__plus(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , isNat(n__s(V1)) -> isNat(activate(V1))
                   , isNat(n__x(V1, V2)) ->
                     and(isNat(activate(V1)), n__isNat(activate(V2)))
                   , 0() -> n__0()
                   , plus(X1, X2) -> n__plus(X1, X2)
                   , isNat(X) -> n__isNat(X)
                   , s(X) -> n__s(X)
                   , x(X1, X2) -> n__x(X1, X2)
                   , activate(n__0()) -> 0()
                   , activate(n__plus(X1, X2)) -> plus(X1, X2)
                   , activate(n__isNat(X)) -> isNat(X)
                   , activate(n__s(X)) -> s(X)
                   , activate(n__x(X1, X2)) -> x(X1, X2)
                   , activate(X) -> X}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the the dependency-graph
                
                  1: plus^#(X1, X2) -> c_11()
                  
                  2: U41^#(tt(), M, N) ->
                     plus^#(x(activate(N), activate(M)), activate(N))
                     -->_1 plus^#(X1, X2) -> c_11() :1
                  
                
                together with the congruence-graph
                
                  ->1:{2}                                                     Weak SCC
                     |
                     `->2:{1}                                                 Noncyclic, trivial, SCC
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: plus^#(X1, X2) -> c_11()}
                  WeakDPs DPs:
                    {2: U41^#(tt(), M, N) ->
                        plus^#(x(activate(N), activate(M)), activate(N))}
                
                The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                
                  {  2: U41^#(tt(), M, N) ->
                        plus^#(x(activate(N), activate(M)), activate(N))
                   , 1: plus^#(X1, X2) -> c_11()}
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  and(tt(), X) -> activate(X)
                     , isNat(n__0()) -> tt()
                     , isNat(n__plus(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , isNat(n__s(V1)) -> isNat(activate(V1))
                     , isNat(n__x(V1, V2)) ->
                       and(isNat(activate(V1)), n__isNat(activate(V2)))
                     , 0() -> n__0()
                     , plus(X1, X2) -> n__plus(X1, X2)
                     , isNat(X) -> n__isNat(X)
                     , s(X) -> n__s(X)
                     , x(X1, X2) -> n__x(X1, X2)
                     , activate(n__0()) -> 0()
                     , activate(n__plus(X1, X2)) -> plus(X1, X2)
                     , activate(n__isNat(X)) -> isNat(X)
                     , activate(n__s(X)) -> s(X)
                     , activate(n__x(X1, X2)) -> x(X1, X2)
                     , activate(X) -> X}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  and(tt(), X) -> activate(X)
                       , isNat(n__0()) -> tt()
                       , isNat(n__plus(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , isNat(n__s(V1)) -> isNat(activate(V1))
                       , isNat(n__x(V1, V2)) ->
                         and(isNat(activate(V1)), n__isNat(activate(V2)))
                       , 0() -> n__0()
                       , plus(X1, X2) -> n__plus(X1, X2)
                       , isNat(X) -> n__isNat(X)
                       , s(X) -> n__s(X)
                       , x(X1, X2) -> n__x(X1, X2)
                       , activate(n__0()) -> 0()
                       , activate(n__plus(X1, X2)) -> plus(X1, X2)
                       , activate(n__isNat(X)) -> isNat(X)
                       , activate(n__s(X)) -> s(X)
                       , activate(n__x(X1, X2)) -> x(X1, X2)
                       , activate(X) -> X}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    No rule is usable.
                    
                    We consider the following Problem:
                    
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))