We consider the following Problem: Strict Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , U41(tt(), N) -> activate(N) , U51(tt(), M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) , U52(tt(), M, N) -> s(plus(activate(N), activate(M))) , U61(tt()) -> 0() , U71(tt(), M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N)) , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , plus(N, 0()) -> U41(isNat(N), N) , plus(N, s(M)) -> U51(isNat(M), M, N) , x(N, 0()) -> U61(isNat(N)) , x(N, s(M)) -> U71(isNat(M), M, N) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { plus(N, s(M)) -> U51(isNat(M), M, N) , x(N, s(M)) -> U71(isNat(M), M, N) , plus(N, 0()) -> U41(isNat(N), N) , x(N, 0()) -> U61(isNat(N))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , U41(tt(), N) -> activate(N) , U51(tt(), M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) , U52(tt(), M, N) -> s(plus(activate(N), activate(M))) , U61(tt()) -> 0() , U71(tt(), M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N)) , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , U41(tt(), N) -> activate(N) , U51(tt(), M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) , U52(tt(), M, N) -> s(plus(activate(N), activate(M))) , U61(tt()) -> 0() , U71(tt(), M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N)) , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) , U12^#(tt()) -> c_2() , U21^#(tt()) -> c_3() , U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) , U32^#(tt()) -> c_5() , U41^#(tt(), N) -> activate^#(N) , U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) , U61^#(tt()) -> 0^#() , U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) , isNat^#(n__0()) -> c_12() , isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1))) , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , 0^#() -> c_16() , plus^#(X1, X2) -> c_17() , s^#(X) -> c_18() , x^#(X1, X2) -> c_19() , activate^#(n__0()) -> 0^#() , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) , activate^#(n__s(X)) -> s^#(X) , activate^#(n__x(X1, X2)) -> x^#(X1, X2) , activate^#(X) -> c_24()} We consider the following Problem: Strict DPs: { U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) , U12^#(tt()) -> c_2() , U21^#(tt()) -> c_3() , U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) , U32^#(tt()) -> c_5() , U41^#(tt(), N) -> activate^#(N) , U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) , U61^#(tt()) -> 0^#() , U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) , isNat^#(n__0()) -> c_12() , isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1))) , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , 0^#() -> c_16() , plus^#(X1, X2) -> c_17() , s^#(X) -> c_18() , x^#(X1, X2) -> c_19() , activate^#(n__0()) -> 0^#() , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) , activate^#(n__s(X)) -> s^#(X) , activate^#(n__x(X1, X2)) -> x^#(X1, X2) , activate^#(X) -> c_24()} Strict Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , U41(tt(), N) -> activate(N) , U51(tt(), M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) , U52(tt(), M, N) -> s(plus(activate(N), activate(M))) , U61(tt()) -> 0() , U71(tt(), M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N)) , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} We consider the following Problem: Strict DPs: { U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) , U12^#(tt()) -> c_2() , U21^#(tt()) -> c_3() , U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) , U32^#(tt()) -> c_5() , U41^#(tt(), N) -> activate^#(N) , U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) , U61^#(tt()) -> 0^#() , U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) , isNat^#(n__0()) -> c_12() , isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1))) , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , 0^#() -> c_16() , plus^#(X1, X2) -> c_17() , s^#(X) -> c_18() , x^#(X1, X2) -> c_19() , activate^#(n__0()) -> 0^#() , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) , activate^#(n__s(X)) -> s^#(X) , activate^#(n__x(X1, X2)) -> x^#(X1, X2) , activate^#(X) -> c_24()} Strict Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: Dependency Pairs: { U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) , U12^#(tt()) -> c_2() , U21^#(tt()) -> c_3() , U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) , U32^#(tt()) -> c_5() , isNat^#(n__0()) -> c_12() , isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1))) , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , activate^#(n__0()) -> 0^#() , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) , activate^#(n__x(X1, X2)) -> x^#(X1, X2)} TRS Component: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} Interpretation of constant growth: ---------------------------------- The following argument positions are usable: Uargs(U11) = {1, 2}, Uargs(U12) = {1}, Uargs(isNat) = {1}, Uargs(activate) = {}, Uargs(U21) = {1}, Uargs(U31) = {1, 2}, Uargs(U32) = {1}, Uargs(U41) = {}, Uargs(U51) = {}, Uargs(U52) = {}, Uargs(s) = {}, Uargs(plus) = {1, 2}, Uargs(U61) = {}, Uargs(U71) = {}, Uargs(U72) = {}, Uargs(x) = {1, 2}, Uargs(n__plus) = {}, Uargs(n__s) = {}, Uargs(n__x) = {}, Uargs(U11^#) = {1, 2}, Uargs(U12^#) = {1}, Uargs(U21^#) = {1}, Uargs(U31^#) = {1, 2}, Uargs(U32^#) = {1}, Uargs(U41^#) = {}, Uargs(activate^#) = {}, Uargs(U51^#) = {}, Uargs(U52^#) = {1, 2, 3}, Uargs(s^#) = {1}, Uargs(U61^#) = {}, Uargs(U71^#) = {}, Uargs(U72^#) = {1, 2, 3}, Uargs(plus^#) = {1, 2}, Uargs(isNat^#) = {}, Uargs(x^#) = {} We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: U11(x1, x2) = [1 1] x1 + [1 2] x2 + [0] [0 0] [0 0] [1] tt() = [3] [1] U12(x1) = [1 1] x1 + [0] [0 0] [1] isNat(x1) = [1 2] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [2] [0 1] [0] U21(x1) = [1 0] x1 + [3] [0 0] [1] U31(x1, x2) = [1 1] x1 + [1 2] x2 + [0] [0 0] [0 0] [1] U32(x1) = [1 0] x1 + [1] [0 0] [1] U41(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] U51(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [0] U52(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [0] s(x1) = [1 3] x1 + [1] [0 0] [3] plus(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 1] [0 1] [2] U61(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [2] [2] U71(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [0] U72(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [0] x(x1, x2) = [1 0] x1 + [1 2] x2 + [3] [0 1] [0 0] [3] n__0() = [1] [2] n__plus(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 1] [0 1] [2] n__s(x1) = [1 3] x1 + [0] [0 0] [3] n__x(x1, x2) = [1 0] x1 + [1 2] x2 + [2] [0 1] [0 0] [3] U11^#(x1, x2) = [1 0] x1 + [1 3] x2 + [0] [0 0] [0 0] [0] U12^#(x1) = [1 0] x1 + [0] [0 0] [0] c_2() = [0] [0] U21^#(x1) = [3 0] x1 + [0] [0 0] [0] c_3() = [0] [0] U31^#(x1, x2) = [1 0] x1 + [1 3] x2 + [0] [0 0] [0 0] [0] U32^#(x1) = [1 0] x1 + [0] [0 0] [0] c_5() = [0] [0] U41^#(x1, x2) = [0 0] x1 + [2 0] x2 + [0] [0 0] [0 0] [0] activate^#(x1) = [1 0] x1 + [0] [0 0] [0] U51^#(x1, x2, x3) = [0 0] x1 + [2 2] x2 + [2 3] x3 + [0] [0 0] [0 0] [0 0] [0] U52^#(x1, x2, x3) = [1 0] x1 + [1 2] x2 + [1 1] x3 + [0] [0 0] [0 0] [0 0] [0] s^#(x1) = [1 0] x1 + [0] [0 0] [0] U61^#(x1) = [0 0] x1 + [0] [0 0] [0] 0^#() = [0] [0] U71^#(x1, x2, x3) = [0 0] x1 + [2 2] x2 + [3 3] x3 + [0] [0 0] [0 0] [0 0] [0] U72^#(x1, x2, x3) = [1 0] x1 + [1 2] x2 + [2 1] x3 + [0] [0 0] [0 0] [0 0] [0] plus^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] isNat^#(x1) = [3 3] x1 + [0] [0 0] [0] c_12() = [0] [0] c_16() = [0] [0] c_17() = [0] [0] c_18() = [0] [0] x^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] c_19() = [0] [0] c_24() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict DPs: { U41^#(tt(), N) -> activate^#(N) , U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) , U61^#(tt()) -> 0^#() , U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) , 0^#() -> c_16() , plus^#(X1, X2) -> c_17() , s^#(X) -> c_18() , x^#(X1, X2) -> c_19() , activate^#(n__s(X)) -> s^#(X) , activate^#(X) -> c_24()} Weak DPs: { U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) , U12^#(tt()) -> c_2() , U21^#(tt()) -> c_3() , U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) , U32^#(tt()) -> c_5() , isNat^#(n__0()) -> c_12() , isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1))) , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , activate^#(n__0()) -> 0^#() , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) , activate^#(n__x(X1, X2)) -> x^#(X1, X2)} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->15:{1} [ YES(O(1),O(1)) ] | |->17:{11} [ YES(O(1),O(1)) ] | | | `->18:{9} [ YES(O(1),O(1)) ] | |->16:{12} [ YES(O(1),O(1)) ] | |->19:{22} [ subsumed ] | | | `->20:{7} [ YES(O(1),O(1)) ] | |->21:{23} [ subsumed ] | | | `->22:{8} [ YES(O(1),O(1)) ] | `->23:{24} [ subsumed ] | `->24:{10} [ YES(O(1),O(1)) ] ->13:{2} [ YES(O(1),O(1)) ] | `->14:{3} [ YES(O(1),O(1)) ] | `->18:{9} [ YES(O(1),O(1)) ] ->12:{4} [ YES(O(1),O(1)) ] | `->20:{7} [ YES(O(1),O(1)) ] ->10:{5} [ YES(O(1),O(1)) ] | `->11:{6} [ YES(O(1),O(1)) ] | `->22:{8} [ YES(O(1),O(1)) ] ->4:{18} [ YES(O(1),O(1)) ] ->3:{19} [ subsumed ] | `->8:{13} [ subsumed ] | `->9:{14} [ YES(O(1),O(1)) ] ->2:{20} [ subsumed ] | `->7:{15} [ YES(O(1),O(1)) ] ->1:{21} [ subsumed ] | `->5:{16} [ subsumed ] | `->6:{17} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: U41^#(tt(), N) -> activate^#(N) , 2: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , 3: U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) , 4: U61^#(tt()) -> 0^#() , 5: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , 6: U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) , 7: 0^#() -> c_16() , 8: plus^#(X1, X2) -> c_17() , 9: s^#(X) -> c_18() , 10: x^#(X1, X2) -> c_19() , 11: activate^#(n__s(X)) -> s^#(X) , 12: activate^#(X) -> c_24()} WeakDPs DPs: { 13: U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) , 14: U12^#(tt()) -> c_2() , 15: U21^#(tt()) -> c_3() , 16: U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) , 17: U32^#(tt()) -> c_5() , 18: isNat^#(n__0()) -> c_12() , 19: isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , 20: isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1))) , 21: isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , 22: activate^#(n__0()) -> 0^#() , 23: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) , 24: activate^#(n__x(X1, X2)) -> x^#(X1, X2)} * Path 15:{1}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict DPs: {U41^#(tt(), N) -> activate^#(N)} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: U41^#(tt(), N) -> activate^#(N) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: U41^#(tt(), N) -> activate^#(N)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: U41^#(tt(), N) -> activate^#(N)} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 15:{1}->17:{11}: YES(O(1),O(1)) ------------------------------------ We consider the following Problem: Strict DPs: {activate^#(n__s(X)) -> s^#(X)} Weak DPs: {U41^#(tt(), N) -> activate^#(N)} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__s(X)) -> s^#(X) 2: U41^#(tt(), N) -> activate^#(N) -->_1 activate^#(n__s(X)) -> s^#(X) :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: activate^#(n__s(X)) -> s^#(X)} WeakDPs DPs: {2: U41^#(tt(), N) -> activate^#(N)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U41^#(tt(), N) -> activate^#(N) , 1: activate^#(n__s(X)) -> s^#(X)} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 15:{1}->17:{11}->18:{9}: YES(O(1),O(1)) -------------------------------------------- We consider the following Problem: Strict DPs: {s^#(X) -> c_18()} Weak DPs: { U41^#(tt(), N) -> activate^#(N) , activate^#(n__s(X)) -> s^#(X)} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: s^#(X) -> c_18() 2: U41^#(tt(), N) -> activate^#(N) -->_1 activate^#(n__s(X)) -> s^#(X) :3 3: activate^#(n__s(X)) -> s^#(X) -->_1 s^#(X) -> c_18() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{3} Weak SCC | `->3:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: s^#(X) -> c_18()} WeakDPs DPs: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__s(X)) -> s^#(X)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__s(X)) -> s^#(X) , 1: s^#(X) -> c_18()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 15:{1}->16:{12}: YES(O(1),O(1)) ------------------------------------ We consider the following Problem: Strict DPs: {activate^#(X) -> c_24()} Weak DPs: {U41^#(tt(), N) -> activate^#(N)} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(X) -> c_24() 2: U41^#(tt(), N) -> activate^#(N) -->_1 activate^#(X) -> c_24() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: activate^#(X) -> c_24()} WeakDPs DPs: {2: U41^#(tt(), N) -> activate^#(N)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U41^#(tt(), N) -> activate^#(N) , 1: activate^#(X) -> c_24()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 15:{1}->19:{22}: subsumed ------------------------------ This path is subsumed by the proof of paths 15:{1}->19:{22}->20:{7}. * Path 15:{1}->19:{22}->20:{7}: YES(O(1),O(1)) -------------------------------------------- We consider the following Problem: Strict DPs: {0^#() -> c_16()} Weak DPs: { U41^#(tt(), N) -> activate^#(N) , activate^#(n__0()) -> 0^#()} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: 0^#() -> c_16() 2: U41^#(tt(), N) -> activate^#(N) -->_1 activate^#(n__0()) -> 0^#() :3 3: activate^#(n__0()) -> 0^#() -->_1 0^#() -> c_16() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{3} Weak SCC | `->3:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: 0^#() -> c_16()} WeakDPs DPs: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__0()) -> 0^#()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__0()) -> 0^#() , 1: 0^#() -> c_16()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 15:{1}->21:{23}: subsumed ------------------------------ This path is subsumed by the proof of paths 15:{1}->21:{23}->22:{8}. * Path 15:{1}->21:{23}->22:{8}: YES(O(1),O(1)) -------------------------------------------- We consider the following Problem: Strict DPs: {plus^#(X1, X2) -> c_17()} Weak DPs: { U41^#(tt(), N) -> activate^#(N) , activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: plus^#(X1, X2) -> c_17() 2: U41^#(tt(), N) -> activate^#(N) -->_1 activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) :3 3: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) -->_1 plus^#(X1, X2) -> c_17() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{3} Weak SCC | `->3:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: plus^#(X1, X2) -> c_17()} WeakDPs DPs: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__plus(X1, X2)) -> plus^#(X1, X2) , 1: plus^#(X1, X2) -> c_17()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 15:{1}->23:{24}: subsumed ------------------------------ This path is subsumed by the proof of paths 15:{1}->23:{24}->24:{10}. * Path 15:{1}->23:{24}->24:{10}: YES(O(1),O(1)) --------------------------------------------- We consider the following Problem: Strict DPs: {x^#(X1, X2) -> c_19()} Weak DPs: { U41^#(tt(), N) -> activate^#(N) , activate^#(n__x(X1, X2)) -> x^#(X1, X2)} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: x^#(X1, X2) -> c_19() 2: U41^#(tt(), N) -> activate^#(N) -->_1 activate^#(n__x(X1, X2)) -> x^#(X1, X2) :3 3: activate^#(n__x(X1, X2)) -> x^#(X1, X2) -->_1 x^#(X1, X2) -> c_19() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{3} Weak SCC | `->3:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: x^#(X1, X2) -> c_19()} WeakDPs DPs: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__x(X1, X2)) -> x^#(X1, X2)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U41^#(tt(), N) -> activate^#(N) , 3: activate^#(n__x(X1, X2)) -> x^#(X1, X2) , 1: x^#(X1, X2) -> c_19()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 13:{2}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict DPs: {U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N))} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 13:{2}->14:{3}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Strict DPs: {U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))} Weak DPs: {U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) 2: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) -->_1 U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))} WeakDPs DPs: {2: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , 1: U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 13:{2}->14:{3}->18:{9}: YES(O(1),O(1)) ------------------------------------------- We consider the following Problem: Strict DPs: {s^#(X) -> c_18()} Weak DPs: { U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: s^#(X) -> c_18() 2: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) -->_1 U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) :3 3: U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) -->_1 s^#(X) -> c_18() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{3} Weak SCC | `->3:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: s^#(X) -> c_18()} WeakDPs DPs: { 2: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , 3: U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M)))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U51^#(tt(), M, N) -> U52^#(isNat(activate(N)), activate(M), activate(N)) , 3: U52^#(tt(), M, N) -> s^#(plus(activate(N), activate(M))) , 1: s^#(X) -> c_18()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 12:{4}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict DPs: {U61^#(tt()) -> 0^#()} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: U61^#(tt()) -> 0^#() together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: U61^#(tt()) -> 0^#()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: U61^#(tt()) -> 0^#()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 12:{4}->20:{7}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Strict DPs: {0^#() -> c_16()} Weak DPs: {U61^#(tt()) -> 0^#()} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: 0^#() -> c_16() 2: U61^#(tt()) -> 0^#() -->_1 0^#() -> c_16() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: 0^#() -> c_16()} WeakDPs DPs: {2: U61^#(tt()) -> 0^#()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U61^#(tt()) -> 0^#() , 1: 0^#() -> c_16()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 10:{5}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict DPs: {U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N))} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 10:{5}->11:{6}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Strict DPs: {U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N))} Weak DPs: {U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) 2: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) -->_1 U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N))} WeakDPs DPs: {2: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , 1: U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N))} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 10:{5}->11:{6}->22:{8}: YES(O(1),O(1)) ------------------------------------------- We consider the following Problem: Strict DPs: {plus^#(X1, X2) -> c_17()} Weak DPs: { U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: plus^#(X1, X2) -> c_17() 2: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) -->_1 U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) :3 3: U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) -->_1 plus^#(X1, X2) -> c_17() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{3} Weak SCC | `->3:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: plus^#(X1, X2) -> c_17()} WeakDPs DPs: { 2: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , 3: U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: U71^#(tt(), M, N) -> U72^#(isNat(activate(N)), activate(M), activate(N)) , 3: U72^#(tt(), M, N) -> plus^#(x(activate(N), activate(M)), activate(N)) , 1: plus^#(X1, X2) -> c_17()} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{18}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{19}: subsumed --------------------- This path is subsumed by the proof of paths 3:{19}->8:{13}. * Path 3:{19}->8:{13}: subsumed ----------------------------- This path is subsumed by the proof of paths 3:{19}->8:{13}->9:{14}. * Path 3:{19}->8:{13}->9:{14}: YES(O(1),O(1)) ------------------------------------------- We consider the following Problem: Weak DPs: { isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , U11^#(tt(), V2) -> U12^#(isNat(activate(V2)))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) -->_1 U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) :2 2: U11^#(tt(), V2) -> U12^#(isNat(activate(V2))) together with the congruence-graph ->1:{1} Weak SCC | `->2:{2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , 2: U11^#(tt(), V2) -> U12^#(isNat(activate(V2)))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: isNat^#(n__plus(V1, V2)) -> U11^#(isNat(activate(V1)), activate(V2)) , 2: U11^#(tt(), V2) -> U12^#(isNat(activate(V2)))} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{20}: subsumed --------------------- This path is subsumed by the proof of paths 2:{20}->7:{15}. * Path 2:{20}->7:{15}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Weak DPs: {isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1)))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1))) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1)))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: isNat^#(n__s(V1)) -> U21^#(isNat(activate(V1)))} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{21}: subsumed --------------------- This path is subsumed by the proof of paths 1:{21}->5:{16}. * Path 1:{21}->5:{16}: subsumed ----------------------------- This path is subsumed by the proof of paths 1:{21}->5:{16}->6:{17}. * Path 1:{21}->5:{16}->6:{17}: YES(O(1),O(1)) ------------------------------------------- We consider the following Problem: Weak DPs: { isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , U31^#(tt(), V2) -> U32^#(isNat(activate(V2)))} Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) -->_1 U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) :2 2: U31^#(tt(), V2) -> U32^#(isNat(activate(V2))) together with the congruence-graph ->1:{1} Weak SCC | `->2:{2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , 2: U31^#(tt(), V2) -> U32^#(isNat(activate(V2)))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2)) , 2: U31^#(tt(), V2) -> U32^#(isNat(activate(V2)))} We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { U11(tt(), V2) -> U12(isNat(activate(V2))) , U12(tt()) -> tt() , U21(tt()) -> tt() , U31(tt(), V2) -> U32(isNat(activate(V2))) , U32(tt()) -> tt() , isNat(n__0()) -> tt() , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) , isNat(n__s(V1)) -> U21(isNat(activate(V1))) , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) , 0() -> n__0() , plus(X1, X2) -> n__plus(X1, X2) , s(X) -> n__s(X) , x(X1, X2) -> n__x(X1, X2) , activate(n__0()) -> 0() , activate(n__plus(X1, X2)) -> plus(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__x(X1, X2)) -> x(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))