We consider the following Problem:

  Strict Trs:
    {  natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
     , fst(pair(XS, YS)) -> XS
     , snd(pair(XS, YS)) -> YS
     , splitAt(0(), XS) -> pair(nil(), XS)
     , splitAt(s(N), cons(X, XS)) ->
       u(splitAt(N, activate(XS)), N, X, activate(XS))
     , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
     , head(cons(N, XS)) -> N
     , tail(cons(N, XS)) -> activate(XS)
     , sel(N, XS) -> head(afterNth(N, XS))
     , take(N, XS) -> fst(splitAt(N, XS))
     , afterNth(N, XS) -> snd(splitAt(N, XS))
     , natsFrom(X) -> n__natsFrom(X)
     , s(X) -> n__s(X)
     , activate(n__natsFrom(X)) -> natsFrom(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  Arguments of following rules are not normal-forms:
  {splitAt(s(N), cons(X, XS)) ->
   u(splitAt(N, activate(XS)), N, X, activate(XS))}
  
  All above mentioned rules can be savely removed.
  
  We consider the following Problem:
  
    Strict Trs:
      {  natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
       , fst(pair(XS, YS)) -> XS
       , snd(pair(XS, YS)) -> YS
       , splitAt(0(), XS) -> pair(nil(), XS)
       , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
       , head(cons(N, XS)) -> N
       , tail(cons(N, XS)) -> activate(XS)
       , sel(N, XS) -> head(afterNth(N, XS))
       , take(N, XS) -> fst(splitAt(N, XS))
       , afterNth(N, XS) -> snd(splitAt(N, XS))
       , natsFrom(X) -> n__natsFrom(X)
       , s(X) -> n__s(X)
       , activate(n__natsFrom(X)) -> natsFrom(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  splitAt(0(), XS) -> pair(nil(), XS)
       , natsFrom(X) -> n__natsFrom(X)
       , s(X) -> n__s(X)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
        Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
        Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
        Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
        Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
        Uargs(take) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       natsFrom(x1) = [1 1] x1 + [1]
                      [0 0]      [1]
       cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                      [0 0]      [0 0]      [1]
       n__natsFrom(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
       n__s(x1) = [1 0] x1 + [0]
                  [0 0]      [0]
       fst(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       pair(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                      [0 0]      [0 0]      [1]
       snd(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       splitAt(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                         [0 0]      [0 0]      [1]
       0() = [0]
             [0]
       nil() = [0]
               [0]
       s(x1) = [1 0] x1 + [1]
               [0 0]      [1]
       u(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1]
                           [0 0]      [0 0]      [0 0]      [0 0]      [1]
       activate(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
       head(x1) = [1 0] x1 + [0]
                  [0 0]      [1]
       tail(x1) = [1 0] x1 + [0]
                  [0 0]      [1]
       sel(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
       afterNth(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                          [0 0]      [0 0]      [0]
       take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                      [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
         , fst(pair(XS, YS)) -> XS
         , snd(pair(XS, YS)) -> YS
         , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
         , head(cons(N, XS)) -> N
         , tail(cons(N, XS)) -> activate(XS)
         , sel(N, XS) -> head(afterNth(N, XS))
         , take(N, XS) -> fst(splitAt(N, XS))
         , afterNth(N, XS) -> snd(splitAt(N, XS))
         , activate(n__natsFrom(X)) -> natsFrom(activate(X))
         , activate(n__s(X)) -> s(activate(X))
         , activate(X) -> X}
      Weak Trs:
        {  splitAt(0(), XS) -> pair(nil(), XS)
         , natsFrom(X) -> n__natsFrom(X)
         , s(X) -> n__s(X)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {sel(N, XS) -> head(afterNth(N, XS))}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
          Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
          Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
          Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
          Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
          Uargs(take) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         natsFrom(x1) = [1 1] x1 + [1]
                        [0 0]      [1]
         cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
         n__natsFrom(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
         n__s(x1) = [1 0] x1 + [0]
                    [0 0]      [0]
         fst(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         pair(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                        [0 0]      [0 0]      [1]
         snd(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         splitAt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [1]
         0() = [0]
               [0]
         nil() = [0]
                 [0]
         s(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
         u(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1]
                             [0 0]      [0 0]      [0 0]      [0 0]      [1]
         activate(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
         head(x1) = [1 0] x1 + [0]
                    [0 0]      [1]
         tail(x1) = [1 0] x1 + [0]
                    [0 0]      [1]
         sel(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                       [0 0]      [0 0]      [2]
         afterNth(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
         take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                        [0 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
           , fst(pair(XS, YS)) -> XS
           , snd(pair(XS, YS)) -> YS
           , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
           , head(cons(N, XS)) -> N
           , tail(cons(N, XS)) -> activate(XS)
           , take(N, XS) -> fst(splitAt(N, XS))
           , afterNth(N, XS) -> snd(splitAt(N, XS))
           , activate(n__natsFrom(X)) -> natsFrom(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(X) -> X}
        Weak Trs:
          {  sel(N, XS) -> head(afterNth(N, XS))
           , splitAt(0(), XS) -> pair(nil(), XS)
           , natsFrom(X) -> n__natsFrom(X)
           , s(X) -> n__s(X)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {take(N, XS) -> fst(splitAt(N, XS))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
            Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
            Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
            Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
            Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
            Uargs(take) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           natsFrom(x1) = [1 1] x1 + [1]
                          [0 0]      [1]
           cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [1]
           n__natsFrom(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
           n__s(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
           fst(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           pair(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                          [0 0]      [0 0]      [1]
           snd(x1) = [1 1] x1 + [0]
                     [0 0]      [1]
           splitAt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [2]
           0() = [0]
                 [0]
           nil() = [0]
                   [0]
           s(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
           u(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1]
                               [0 0]      [0 0]      [0 0]      [0 0]      [1]
           activate(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           head(x1) = [1 0] x1 + [0]
                      [0 0]      [1]
           tail(x1) = [1 0] x1 + [0]
                      [0 0]      [1]
           sel(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [2]
           afterNth(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
           take(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                          [0 0]      [0 0]      [2]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
             , fst(pair(XS, YS)) -> XS
             , snd(pair(XS, YS)) -> YS
             , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
             , head(cons(N, XS)) -> N
             , tail(cons(N, XS)) -> activate(XS)
             , afterNth(N, XS) -> snd(splitAt(N, XS))
             , activate(n__natsFrom(X)) -> natsFrom(activate(X))
             , activate(n__s(X)) -> s(activate(X))
             , activate(X) -> X}
          Weak Trs:
            {  take(N, XS) -> fst(splitAt(N, XS))
             , sel(N, XS) -> head(afterNth(N, XS))
             , splitAt(0(), XS) -> pair(nil(), XS)
             , natsFrom(X) -> n__natsFrom(X)
             , s(X) -> n__s(X)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {afterNth(N, XS) -> snd(splitAt(N, XS))}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
              Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
              Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
              Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
              Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
              Uargs(take) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             natsFrom(x1) = [1 1] x1 + [1]
                            [0 0]      [1]
             cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                            [0 0]      [0 0]      [1]
             n__natsFrom(x1) = [1 0] x1 + [0]
                               [0 0]      [0]
             n__s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
             fst(x1) = [1 1] x1 + [1]
                       [0 0]      [1]
             pair(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
             snd(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             splitAt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 1]      [0 0]      [0]
             0() = [0]
                   [0]
             nil() = [0]
                     [0]
             s(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
             u(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1]
                                 [0 0]      [0 0]      [0 0]      [0 0]      [1]
             activate(x1) = [1 0] x1 + [0]
                            [0 0]      [0]
             head(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
             tail(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
             sel(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                           [0 0]      [0 0]      [2]
             afterNth(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                [0 0]      [0 0]      [2]
             take(x1, x2) = [0 1] x1 + [0 0] x2 + [2]
                            [0 0]      [0 0]      [2]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
               , fst(pair(XS, YS)) -> XS
               , snd(pair(XS, YS)) -> YS
               , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
               , head(cons(N, XS)) -> N
               , tail(cons(N, XS)) -> activate(XS)
               , activate(n__natsFrom(X)) -> natsFrom(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(X) -> X}
            Weak Trs:
              {  afterNth(N, XS) -> snd(splitAt(N, XS))
               , take(N, XS) -> fst(splitAt(N, XS))
               , sel(N, XS) -> head(afterNth(N, XS))
               , splitAt(0(), XS) -> pair(nil(), XS)
               , natsFrom(X) -> n__natsFrom(X)
               , s(X) -> n__s(X)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
                Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
                Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
                Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
                Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
                Uargs(take) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               natsFrom(x1) = [1 1] x1 + [2]
                              [0 0]      [1]
               cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                              [0 0]      [0 0]      [1]
               n__natsFrom(x1) = [1 0] x1 + [0]
                                 [0 0]      [0]
               n__s(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
               fst(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               pair(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [1]
               snd(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               splitAt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [1]
               0() = [0]
                     [0]
               nil() = [0]
                       [0]
               s(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
               u(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1]
                                   [0 0]      [0 0]      [0 0]      [0 0]      [0]
               activate(x1) = [1 0] x1 + [0]
                              [0 0]      [0]
               head(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
               tail(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
               sel(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                             [0 0]      [0 0]      [2]
               afterNth(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                  [0 0]      [0 0]      [2]
               take(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                              [0 0]      [0 0]      [2]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  fst(pair(XS, YS)) -> XS
                 , snd(pair(XS, YS)) -> YS
                 , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                 , head(cons(N, XS)) -> N
                 , tail(cons(N, XS)) -> activate(XS)
                 , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                 , activate(n__s(X)) -> s(activate(X))
                 , activate(X) -> X}
              Weak Trs:
                {  natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                 , afterNth(N, XS) -> snd(splitAt(N, XS))
                 , take(N, XS) -> fst(splitAt(N, XS))
                 , sel(N, XS) -> head(afterNth(N, XS))
                 , splitAt(0(), XS) -> pair(nil(), XS)
                 , natsFrom(X) -> n__natsFrom(X)
                 , s(X) -> n__s(X)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component:
                {u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
                  Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
                  Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
                  Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
                  Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
                  Uargs(take) = {}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 natsFrom(x1) = [1 0] x1 + [1]
                                [0 0]      [1]
                 cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [1]
                 n__natsFrom(x1) = [1 0] x1 + [0]
                                   [0 0]      [0]
                 n__s(x1) = [1 0] x1 + [0]
                            [0 0]      [0]
                 fst(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 pair(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [1]
                 snd(x1) = [1 0] x1 + [1]
                           [0 0]      [1]
                 splitAt(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [1]
                 0() = [0]
                       [0]
                 nil() = [0]
                         [0]
                 s(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
                 u(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [1 0] x4 + [1]
                                     [0 0]      [0 0]      [0 0]      [0 0]      [1]
                 activate(x1) = [1 0] x1 + [0]
                                [0 0]      [1]
                 head(x1) = [1 0] x1 + [1]
                            [0 0]      [1]
                 tail(x1) = [1 0] x1 + [1]
                            [0 0]      [1]
                 sel(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                               [0 0]      [0 0]      [2]
                 afterNth(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                    [0 0]      [0 0]      [2]
                 take(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                [0 0]      [0 0]      [2]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  fst(pair(XS, YS)) -> XS
                   , snd(pair(XS, YS)) -> YS
                   , head(cons(N, XS)) -> N
                   , tail(cons(N, XS)) -> activate(XS)
                   , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                   , activate(n__s(X)) -> s(activate(X))
                   , activate(X) -> X}
                Weak Trs:
                  {  u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                   , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                   , afterNth(N, XS) -> snd(splitAt(N, XS))
                   , take(N, XS) -> fst(splitAt(N, XS))
                   , sel(N, XS) -> head(afterNth(N, XS))
                   , splitAt(0(), XS) -> pair(nil(), XS)
                   , natsFrom(X) -> n__natsFrom(X)
                   , s(X) -> n__s(X)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {snd(pair(XS, YS)) -> YS}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
                    Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
                    Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
                    Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
                    Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
                    Uargs(take) = {}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   natsFrom(x1) = [1 0] x1 + [0]
                                  [0 0]      [1]
                   cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [1]
                   n__natsFrom(x1) = [1 0] x1 + [0]
                                     [0 0]      [0]
                   n__s(x1) = [1 0] x1 + [0]
                              [0 0]      [0]
                   fst(x1) = [1 0] x1 + [0]
                             [1 0]      [0]
                   pair(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                  [0 0]      [0 1]      [0]
                   snd(x1) = [1 0] x1 + [2]
                             [0 1]      [1]
                   splitAt(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                     [0 0]      [0 1]      [0]
                   0() = [3]
                         [0]
                   nil() = [0]
                           [0]
                   s(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
                   u(x1, x2, x3, x4) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [0 0] x4 + [0]
                                       [0 1]      [0 0]      [0 0]      [0 0]      [1]
                   activate(x1) = [1 0] x1 + [0]
                                  [0 0]      [1]
                   head(x1) = [1 0] x1 + [1]
                              [1 0]      [1]
                   tail(x1) = [1 0] x1 + [0]
                              [0 0]      [0]
                   sel(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                 [1 0]      [1 0]      [3]
                   afterNth(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                      [0 0]      [0 1]      [2]
                   take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                  [1 0]      [1 0]      [0]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  fst(pair(XS, YS)) -> XS
                     , head(cons(N, XS)) -> N
                     , tail(cons(N, XS)) -> activate(XS)
                     , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                     , activate(n__s(X)) -> s(activate(X))
                     , activate(X) -> X}
                  Weak Trs:
                    {  snd(pair(XS, YS)) -> YS
                     , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                     , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                     , afterNth(N, XS) -> snd(splitAt(N, XS))
                     , take(N, XS) -> fst(splitAt(N, XS))
                     , sel(N, XS) -> head(afterNth(N, XS))
                     , splitAt(0(), XS) -> pair(nil(), XS)
                     , natsFrom(X) -> n__natsFrom(X)
                     , s(X) -> n__s(X)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {head(cons(N, XS)) -> N}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
                      Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
                      Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
                      Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
                      Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
                      Uargs(take) = {}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     natsFrom(x1) = [1 0] x1 + [0]
                                    [1 1]      [3]
                     cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                    [0 1]      [0 0]      [1]
                     n__natsFrom(x1) = [1 0] x1 + [0]
                                       [0 0]      [0]
                     n__s(x1) = [1 0] x1 + [0]
                                [0 0]      [0]
                     fst(x1) = [1 0] x1 + [0]
                               [1 0]      [1]
                     pair(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                    [0 0]      [0 1]      [0]
                     snd(x1) = [1 0] x1 + [0]
                               [0 1]      [1]
                     splitAt(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                       [0 1]      [0 1]      [0]
                     0() = [0]
                           [0]
                     nil() = [0]
                             [0]
                     s(x1) = [1 0] x1 + [0]
                             [0 0]      [1]
                     u(x1, x2, x3, x4) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [0 0] x4 + [0]
                                         [0 1]      [0 0]      [0 0]      [0 0]      [1]
                     activate(x1) = [1 0] x1 + [0]
                                    [0 0]      [1]
                     head(x1) = [1 0] x1 + [1]
                                [0 1]      [1]
                     tail(x1) = [1 0] x1 + [1]
                                [0 0]      [1]
                     sel(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                   [0 1]      [0 1]      [3]
                     afterNth(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                        [0 1]      [0 1]      [2]
                     take(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                    [0 0]      [1 0]      [3]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  fst(pair(XS, YS)) -> XS
                       , tail(cons(N, XS)) -> activate(XS)
                       , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                       , activate(n__s(X)) -> s(activate(X))
                       , activate(X) -> X}
                    Weak Trs:
                      {  head(cons(N, XS)) -> N
                       , snd(pair(XS, YS)) -> YS
                       , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                       , take(N, XS) -> fst(splitAt(N, XS))
                       , sel(N, XS) -> head(afterNth(N, XS))
                       , splitAt(0(), XS) -> pair(nil(), XS)
                       , natsFrom(X) -> n__natsFrom(X)
                       , s(X) -> n__s(X)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    The weightgap principle applies, where following rules are oriented strictly:
                    
                    TRS Component: {fst(pair(XS, YS)) -> XS}
                    
                    Interpretation of nonconstant growth:
                    -------------------------------------
                      The following argument positions are usable:
                        Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
                        Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
                        Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
                        Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
                        Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
                        Uargs(take) = {}
                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                      Interpretation Functions:
                       natsFrom(x1) = [1 0] x1 + [0]
                                      [1 1]      [1]
                       cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                      [0 1]      [0 0]      [0]
                       n__natsFrom(x1) = [1 0] x1 + [0]
                                         [0 0]      [0]
                       n__s(x1) = [1 0] x1 + [0]
                                  [0 0]      [0]
                       fst(x1) = [1 0] x1 + [1]
                                 [0 1]      [1]
                       pair(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                      [0 1]      [0 1]      [0]
                       snd(x1) = [1 0] x1 + [1]
                                 [0 1]      [1]
                       splitAt(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                         [0 0]      [0 1]      [0]
                       0() = [0]
                             [0]
                       nil() = [0]
                               [0]
                       s(x1) = [1 0] x1 + [0]
                               [0 0]      [1]
                       u(x1, x2, x3, x4) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [0 0] x4 + [1]
                                           [0 1]      [0 0]      [0 0]      [0 0]      [1]
                       activate(x1) = [1 0] x1 + [0]
                                      [0 0]      [0]
                       head(x1) = [1 0] x1 + [1]
                                  [0 1]      [1]
                       tail(x1) = [1 0] x1 + [1]
                                  [0 0]      [0]
                       sel(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                     [0 0]      [0 1]      [3]
                       afterNth(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                          [0 0]      [0 1]      [2]
                       take(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                      [0 0]      [0 1]      [2]
                    
                    The strictly oriented rules are moved into the weak component.
                    
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  tail(cons(N, XS)) -> activate(XS)
                         , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                         , activate(n__s(X)) -> s(activate(X))
                         , activate(X) -> X}
                      Weak Trs:
                        {  fst(pair(XS, YS)) -> XS
                         , head(cons(N, XS)) -> N
                         , snd(pair(XS, YS)) -> YS
                         , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                         , take(N, XS) -> fst(splitAt(N, XS))
                         , sel(N, XS) -> head(afterNth(N, XS))
                         , splitAt(0(), XS) -> pair(nil(), XS)
                         , natsFrom(X) -> n__natsFrom(X)
                         , s(X) -> n__s(X)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      The weightgap principle applies, where following rules are oriented strictly:
                      
                      TRS Component: {activate(X) -> X}
                      
                      Interpretation of nonconstant growth:
                      -------------------------------------
                        The following argument positions are usable:
                          Uargs(natsFrom) = {1}, Uargs(cons) = {1}, Uargs(n__natsFrom) = {},
                          Uargs(n__s) = {}, Uargs(fst) = {1}, Uargs(pair) = {1},
                          Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
                          Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {1},
                          Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
                          Uargs(take) = {}
                        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                        Interpretation Functions:
                         natsFrom(x1) = [1 0] x1 + [0]
                                        [0 1]      [1]
                         cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                        [0 1]      [0 0]      [0]
                         n__natsFrom(x1) = [1 0] x1 + [0]
                                           [0 1]      [1]
                         n__s(x1) = [1 0] x1 + [0]
                                    [0 0]      [0]
                         fst(x1) = [1 0] x1 + [1]
                                   [0 1]      [1]
                         pair(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                        [0 1]      [0 1]      [0]
                         snd(x1) = [1 0] x1 + [1]
                                   [0 1]      [1]
                         splitAt(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                           [0 0]      [0 1]      [1]
                         0() = [0]
                               [0]
                         nil() = [0]
                                 [0]
                         s(x1) = [1 0] x1 + [0]
                                 [0 0]      [1]
                         u(x1, x2, x3, x4) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [0 0] x4 + [3]
                                             [0 1]      [0 0]      [0 1]      [0 0]      [1]
                         activate(x1) = [1 0] x1 + [2]
                                        [0 1]      [0]
                         head(x1) = [1 0] x1 + [1]
                                    [0 1]      [1]
                         tail(x1) = [1 0] x1 + [1]
                                    [0 0]      [1]
                         sel(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                       [0 0]      [0 1]      [3]
                         afterNth(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                            [0 0]      [0 1]      [2]
                         take(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                        [0 0]      [0 1]      [2]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  tail(cons(N, XS)) -> activate(XS)
                           , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                           , activate(n__s(X)) -> s(activate(X))}
                        Weak Trs:
                          {  activate(X) -> X
                           , fst(pair(XS, YS)) -> XS
                           , head(cons(N, XS)) -> N
                           , snd(pair(XS, YS)) -> YS
                           , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                           , take(N, XS) -> fst(splitAt(N, XS))
                           , sel(N, XS) -> head(afterNth(N, XS))
                           , splitAt(0(), XS) -> pair(nil(), XS)
                           , natsFrom(X) -> n__natsFrom(X)
                           , s(X) -> n__s(X)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs:
                            {  tail(cons(N, XS)) -> activate(XS)
                             , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                             , activate(n__s(X)) -> s(activate(X))}
                          Weak Trs:
                            {  activate(X) -> X
                             , fst(pair(XS, YS)) -> XS
                             , head(cons(N, XS)) -> N
                             , snd(pair(XS, YS)) -> YS
                             , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                             , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                             , afterNth(N, XS) -> snd(splitAt(N, XS))
                             , take(N, XS) -> fst(splitAt(N, XS))
                             , sel(N, XS) -> head(afterNth(N, XS))
                             , splitAt(0(), XS) -> pair(nil(), XS)
                             , natsFrom(X) -> n__natsFrom(X)
                             , s(X) -> n__s(X)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          We have computed the following dependency pairs
                          
                            Strict DPs:
                              {  tail^#(cons(N, XS)) -> activate^#(XS)
                               , activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                               , activate^#(n__s(X)) -> s^#(activate(X))}
                            Weak DPs:
                              {  activate^#(X) -> c_4()
                               , fst^#(pair(XS, YS)) -> c_5()
                               , head^#(cons(N, XS)) -> c_6()
                               , snd^#(pair(XS, YS)) -> c_7()
                               , u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                               , natsFrom^#(N) -> c_9()
                               , afterNth^#(N, XS) -> snd^#(splitAt(N, XS))
                               , take^#(N, XS) -> fst^#(splitAt(N, XS))
                               , sel^#(N, XS) -> head^#(afterNth(N, XS))
                               , splitAt^#(0(), XS) -> c_13()
                               , natsFrom^#(X) -> c_14()
                               , s^#(X) -> c_15()}
                          
                          We consider the following Problem:
                          
                            Strict DPs:
                              {  tail^#(cons(N, XS)) -> activate^#(XS)
                               , activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                               , activate^#(n__s(X)) -> s^#(activate(X))}
                            Strict Trs:
                              {  tail(cons(N, XS)) -> activate(XS)
                               , activate(n__natsFrom(X)) -> natsFrom(activate(X))
                               , activate(n__s(X)) -> s(activate(X))}
                            Weak DPs:
                              {  activate^#(X) -> c_4()
                               , fst^#(pair(XS, YS)) -> c_5()
                               , head^#(cons(N, XS)) -> c_6()
                               , snd^#(pair(XS, YS)) -> c_7()
                               , u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                               , natsFrom^#(N) -> c_9()
                               , afterNth^#(N, XS) -> snd^#(splitAt(N, XS))
                               , take^#(N, XS) -> fst^#(splitAt(N, XS))
                               , sel^#(N, XS) -> head^#(afterNth(N, XS))
                               , splitAt^#(0(), XS) -> c_13()
                               , natsFrom^#(X) -> c_14()
                               , s^#(X) -> c_15()}
                            Weak Trs:
                              {  activate(X) -> X
                               , fst(pair(XS, YS)) -> XS
                               , head(cons(N, XS)) -> N
                               , snd(pair(XS, YS)) -> YS
                               , u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS)
                               , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                               , afterNth(N, XS) -> snd(splitAt(N, XS))
                               , take(N, XS) -> fst(splitAt(N, XS))
                               , sel(N, XS) -> head(afterNth(N, XS))
                               , splitAt(0(), XS) -> pair(nil(), XS)
                               , natsFrom(X) -> n__natsFrom(X)
                               , s(X) -> n__s(X)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(?,O(n^1))
                          
                          Proof:
                            We replace strict/weak-rules by the corresponding usable rules:
                            
                              Strict Usable Rules:
                                {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))}
                              Weak Usable Rules:
                                {  activate(X) -> X
                                 , snd(pair(XS, YS)) -> YS
                                 , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                 , afterNth(N, XS) -> snd(splitAt(N, XS))
                                 , splitAt(0(), XS) -> pair(nil(), XS)
                                 , natsFrom(X) -> n__natsFrom(X)
                                 , s(X) -> n__s(X)}
                            
                            We consider the following Problem:
                            
                              Strict DPs:
                                {  tail^#(cons(N, XS)) -> activate^#(XS)
                                 , activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                 , activate^#(n__s(X)) -> s^#(activate(X))}
                              Strict Trs:
                                {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))}
                              Weak DPs:
                                {  activate^#(X) -> c_4()
                                 , fst^#(pair(XS, YS)) -> c_5()
                                 , head^#(cons(N, XS)) -> c_6()
                                 , snd^#(pair(XS, YS)) -> c_7()
                                 , u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                 , natsFrom^#(N) -> c_9()
                                 , afterNth^#(N, XS) -> snd^#(splitAt(N, XS))
                                 , take^#(N, XS) -> fst^#(splitAt(N, XS))
                                 , sel^#(N, XS) -> head^#(afterNth(N, XS))
                                 , splitAt^#(0(), XS) -> c_13()
                                 , natsFrom^#(X) -> c_14()
                                 , s^#(X) -> c_15()}
                              Weak Trs:
                                {  activate(X) -> X
                                 , snd(pair(XS, YS)) -> YS
                                 , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                 , afterNth(N, XS) -> snd(splitAt(N, XS))
                                 , splitAt(0(), XS) -> pair(nil(), XS)
                                 , natsFrom(X) -> n__natsFrom(X)
                                 , s(X) -> n__s(X)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(?,O(n^1))
                            
                            Proof:
                              The weightgap principle applies, where following rules are oriented strictly:
                              
                              Dependency Pairs:
                                {  activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                 , activate^#(n__s(X)) -> s^#(activate(X))}
                              TRS Component:
                                {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))}
                              
                              Interpretation of constant growth:
                              ----------------------------------
                                The following argument positions are usable:
                                  Uargs(natsFrom) = {1}, Uargs(cons) = {}, Uargs(n__natsFrom) = {},
                                  Uargs(n__s) = {}, Uargs(fst) = {}, Uargs(pair) = {},
                                  Uargs(snd) = {1}, Uargs(splitAt) = {}, Uargs(s) = {1},
                                  Uargs(u) = {}, Uargs(activate) = {}, Uargs(head) = {},
                                  Uargs(tail) = {}, Uargs(sel) = {}, Uargs(afterNth) = {},
                                  Uargs(take) = {}, Uargs(tail^#) = {}, Uargs(activate^#) = {},
                                  Uargs(natsFrom^#) = {1}, Uargs(s^#) = {1}, Uargs(fst^#) = {1},
                                  Uargs(head^#) = {1}, Uargs(snd^#) = {1}, Uargs(u^#) = {},
                                  Uargs(afterNth^#) = {}, Uargs(take^#) = {}, Uargs(sel^#) = {},
                                  Uargs(splitAt^#) = {}
                                We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                                Interpretation Functions:
                                 natsFrom(x1) = [1 0] x1 + [1]
                                                [0 0]      [1]
                                 cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                                [0 0]      [0 0]      [1]
                                 n__natsFrom(x1) = [1 0] x1 + [1]
                                                   [0 0]      [0]
                                 n__s(x1) = [1 0] x1 + [2]
                                            [0 0]      [0]
                                 fst(x1) = [0 0] x1 + [0]
                                           [0 0]      [0]
                                 pair(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                                [0 1]      [0 1]      [0]
                                 snd(x1) = [1 0] x1 + [1]
                                           [0 2]      [1]
                                 splitAt(x1, x2) = [0 0] x1 + [2 0] x2 + [0]
                                                   [0 0]      [0 1]      [0]
                                 0() = [1]
                                       [1]
                                 nil() = [0]
                                         [0]
                                 s(x1) = [1 0] x1 + [3]
                                         [0 0]      [1]
                                 u(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
                                 activate(x1) = [2 0] x1 + [0]
                                                [0 1]      [1]
                                 head(x1) = [0 0] x1 + [0]
                                            [0 0]      [0]
                                 tail(x1) = [0 0] x1 + [0]
                                            [0 0]      [0]
                                 sel(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                               [0 0]      [0 0]      [0]
                                 afterNth(x1, x2) = [0 0] x1 + [2 0] x2 + [1]
                                                    [0 0]      [0 2]      [2]
                                 take(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 0]      [0 0]      [0]
                                 tail^#(x1) = [2 0] x1 + [0]
                                              [0 0]      [0]
                                 activate^#(x1) = [2 0] x1 + [0]
                                                  [0 0]      [0]
                                 natsFrom^#(x1) = [1 0] x1 + [0]
                                                  [0 0]      [0]
                                 s^#(x1) = [1 0] x1 + [0]
                                           [0 0]      [0]
                                 c_4() = [0]
                                         [0]
                                 fst^#(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                 c_5() = [0]
                                         [0]
                                 head^#(x1) = [1 0] x1 + [0]
                                              [0 0]      [1]
                                 c_6() = [0]
                                         [0]
                                 snd^#(x1) = [1 0] x1 + [1]
                                             [0 0]      [1]
                                 c_7() = [0]
                                         [0]
                                 u^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [2 0] x3 + [0 0] x4 + [1]
                                                       [0 0]      [0 0]      [0 0]      [0 0]      [1]
                                 c_9() = [0]
                                         [0]
                                 afterNth^#(x1, x2) = [0 0] x1 + [2 0] x2 + [2]
                                                      [0 0]      [0 0]      [2]
                                 take^#(x1, x2) = [0 0] x1 + [2 0] x2 + [2]
                                                  [0 0]      [0 0]      [2]
                                 sel^#(x1, x2) = [0 0] x1 + [2 0] x2 + [2]
                                                 [0 0]      [0 0]      [2]
                                 splitAt^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                                     [0 1]      [0 0]      [0]
                                 c_13() = [0]
                                          [0]
                                 c_14() = [0]
                                          [0]
                                 c_15() = [0]
                                          [0]
                              
                              The strictly oriented rules are moved into the weak component.
                              
                              We consider the following Problem:
                              
                                Strict DPs: {tail^#(cons(N, XS)) -> activate^#(XS)}
                                Weak DPs:
                                  {  activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                   , activate^#(n__s(X)) -> s^#(activate(X))
                                   , activate^#(X) -> c_4()
                                   , fst^#(pair(XS, YS)) -> c_5()
                                   , head^#(cons(N, XS)) -> c_6()
                                   , snd^#(pair(XS, YS)) -> c_7()
                                   , u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                   , natsFrom^#(N) -> c_9()
                                   , afterNth^#(N, XS) -> snd^#(splitAt(N, XS))
                                   , take^#(N, XS) -> fst^#(splitAt(N, XS))
                                   , sel^#(N, XS) -> head^#(afterNth(N, XS))
                                   , splitAt^#(0(), XS) -> c_13()
                                   , natsFrom^#(X) -> c_14()
                                   , s^#(X) -> c_15()}
                                Weak Trs:
                                  {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(X) -> X
                                   , snd(pair(XS, YS)) -> YS
                                   , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                   , afterNth(N, XS) -> snd(splitAt(N, XS))
                                   , splitAt(0(), XS) -> pair(nil(), XS)
                                   , natsFrom(X) -> n__natsFrom(X)
                                   , s(X) -> n__s(X)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(?,O(n^1))
                              
                              Proof:
                                We use following congruence DG for path analysis
                                
                                ->9:{1}                                                     [   YES(O(1),O(1))   ]
                                   |
                                   |->11:{2}                                                [      subsumed      ]
                                   |   |
                                   |   |->12:{9}                                            [   YES(O(1),O(1))   ]
                                   |   |
                                   |   `->13:{14}                                           [   YES(O(1),O(1))   ]
                                   |
                                   |->14:{3}                                                [      subsumed      ]
                                   |   |
                                   |   `->15:{15}                                           [   YES(O(1),O(1))   ]
                                   |
                                   `->10:{4}                                                [   YES(O(1),O(1))   ]
                                
                                ->5:{8}                                                     [      subsumed      ]
                                   |
                                   |->11:{2}                                                [      subsumed      ]
                                   |   |
                                   |   |->12:{9}                                            [   YES(O(1),O(1))   ]
                                   |   |
                                   |   `->13:{14}                                           [   YES(O(1),O(1))   ]
                                   |
                                   |->14:{3}                                                [      subsumed      ]
                                   |   |
                                   |   `->15:{15}                                           [   YES(O(1),O(1))   ]
                                   |
                                   `->10:{4}                                                [   YES(O(1),O(1))   ]
                                
                                ->4:{10}                                                    [      subsumed      ]
                                   |
                                   `->6:{7}                                                 [   YES(O(1),O(1))   ]
                                
                                ->3:{11}                                                    [      subsumed      ]
                                   |
                                   `->8:{5}                                                 [   YES(O(1),O(1))   ]
                                
                                ->2:{12}                                                    [      subsumed      ]
                                   |
                                   `->7:{6}                                                 [   YES(O(1),O(1))   ]
                                
                                ->1:{13}                                                    [   YES(O(1),O(1))   ]
                                
                                
                                Here dependency-pairs are as follows:
                                
                                Strict DPs:
                                  {1: tail^#(cons(N, XS)) -> activate^#(XS)}
                                WeakDPs DPs:
                                  {  2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                   , 3: activate^#(n__s(X)) -> s^#(activate(X))
                                   , 4: activate^#(X) -> c_4()
                                   , 5: fst^#(pair(XS, YS)) -> c_5()
                                   , 6: head^#(cons(N, XS)) -> c_6()
                                   , 7: snd^#(pair(XS, YS)) -> c_7()
                                   , 8: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                   , 9: natsFrom^#(N) -> c_9()
                                   , 10: afterNth^#(N, XS) -> snd^#(splitAt(N, XS))
                                   , 11: take^#(N, XS) -> fst^#(splitAt(N, XS))
                                   , 12: sel^#(N, XS) -> head^#(afterNth(N, XS))
                                   , 13: splitAt^#(0(), XS) -> c_13()
                                   , 14: natsFrom^#(X) -> c_14()
                                   , 15: s^#(X) -> c_15()}
                                
                                * Path 9:{1}: YES(O(1),O(1))
                                  --------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Strict DPs: {tail^#(cons(N, XS)) -> activate^#(XS)}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: tail^#(cons(N, XS)) -> activate^#(XS)
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Noncyclic, trivial, SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      Strict DPs:
                                        {1: tail^#(cons(N, XS)) -> activate^#(XS)}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {1: tail^#(cons(N, XS)) -> activate^#(XS)}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 9:{1}->11:{2}: subsumed
                                  ----------------------------
                                  
                                  This path is subsumed by the proof of paths 9:{1}->11:{2}->13:{14},
                                                                              9:{1}->11:{2}->12:{9}.
                                
                                * Path 9:{1}->11:{2}->12:{9}: YES(O(1),O(1))
                                  ------------------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs:
                                      {  tail^#(cons(N, XS)) -> activate^#(XS)
                                       , activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: tail^#(cons(N, XS)) -> activate^#(XS)
                                         -->_1 activate^#(n__natsFrom(X)) ->
                                               natsFrom^#(activate(X)) :2
                                      
                                      2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                         |
                                         `->2:{2}                                                 Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {  1: tail^#(cons(N, XS)) -> activate^#(XS)
                                         , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {  1: tail^#(cons(N, XS)) -> activate^#(XS)
                                       , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 9:{1}->11:{2}->13:{14}: YES(O(1),O(1))
                                  -------------------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs:
                                      {  tail^#(cons(N, XS)) -> activate^#(XS)
                                       , activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: tail^#(cons(N, XS)) -> activate^#(XS)
                                         -->_1 activate^#(n__natsFrom(X)) ->
                                               natsFrom^#(activate(X)) :2
                                      
                                      2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                         |
                                         `->2:{2}                                                 Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {  1: tail^#(cons(N, XS)) -> activate^#(XS)
                                         , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {  1: tail^#(cons(N, XS)) -> activate^#(XS)
                                       , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 9:{1}->14:{3}: subsumed
                                  ----------------------------
                                  
                                  This path is subsumed by the proof of paths 9:{1}->14:{3}->15:{15}.
                                
                                * Path 9:{1}->14:{3}->15:{15}: YES(O(1),O(1))
                                  -------------------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs:
                                      {  tail^#(cons(N, XS)) -> activate^#(XS)
                                       , activate^#(n__s(X)) -> s^#(activate(X))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: tail^#(cons(N, XS)) -> activate^#(XS)
                                         -->_1 activate^#(n__s(X)) -> s^#(activate(X)) :2
                                      
                                      2: activate^#(n__s(X)) -> s^#(activate(X))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                         |
                                         `->2:{2}                                                 Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {  1: tail^#(cons(N, XS)) -> activate^#(XS)
                                         , 2: activate^#(n__s(X)) -> s^#(activate(X))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {  1: tail^#(cons(N, XS)) -> activate^#(XS)
                                       , 2: activate^#(n__s(X)) -> s^#(activate(X))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 9:{1}->10:{4}: YES(O(1),O(1))
                                  ----------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs: {tail^#(cons(N, XS)) -> activate^#(XS)}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: tail^#(cons(N, XS)) -> activate^#(XS)
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {1: tail^#(cons(N, XS)) -> activate^#(XS)}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {1: tail^#(cons(N, XS)) -> activate^#(XS)}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 5:{8}: subsumed
                                  --------------------
                                  
                                  This path is subsumed by the proof of paths 5:{8}->14:{3},
                                                                              5:{8}->11:{2},
                                                                              5:{8}->10:{4}.
                                
                                * Path 5:{8}->11:{2}: subsumed
                                  ----------------------------
                                  
                                  This path is subsumed by the proof of paths 5:{8}->11:{2}->13:{14},
                                                                              5:{8}->11:{2}->12:{9}.
                                
                                * Path 5:{8}->11:{2}->12:{9}: YES(O(1),O(1))
                                  ------------------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs:
                                      {  u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                       , activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                         -->_1 activate^#(n__natsFrom(X)) ->
                                               natsFrom^#(activate(X)) :2
                                      
                                      2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                         |
                                         `->2:{2}                                                 Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {  1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                         , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {  1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                       , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 5:{8}->11:{2}->13:{14}: YES(O(1),O(1))
                                  -------------------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs:
                                      {  u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                       , activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                         -->_1 activate^#(n__natsFrom(X)) ->
                                               natsFrom^#(activate(X)) :2
                                      
                                      2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                         |
                                         `->2:{2}                                                 Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {  1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                         , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {  1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                       , 2: activate^#(n__natsFrom(X)) -> natsFrom^#(activate(X))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 5:{8}->14:{3}: subsumed
                                  ----------------------------
                                  
                                  This path is subsumed by the proof of paths 5:{8}->14:{3}->15:{15}.
                                
                                * Path 5:{8}->14:{3}->15:{15}: YES(O(1),O(1))
                                  -------------------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs:
                                      {  u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                       , activate^#(n__s(X)) -> s^#(activate(X))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                         -->_1 activate^#(n__s(X)) -> s^#(activate(X)) :2
                                      
                                      2: activate^#(n__s(X)) -> s^#(activate(X))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                         |
                                         `->2:{2}                                                 Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {  1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                         , 2: activate^#(n__s(X)) -> s^#(activate(X))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {  1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                       , 2: activate^#(n__s(X)) -> s^#(activate(X))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 5:{8}->10:{4}: YES(O(1),O(1))
                                  ----------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs: {u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {1: u^#(pair(YS, ZS), N, X, XS) -> activate^#(X)}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 4:{10}: subsumed
                                  ---------------------
                                  
                                  This path is subsumed by the proof of paths 4:{10}->6:{7}.
                                
                                * Path 4:{10}->6:{7}: YES(O(1),O(1))
                                  ----------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs: {afterNth^#(N, XS) -> snd^#(splitAt(N, XS))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: afterNth^#(N, XS) -> snd^#(splitAt(N, XS))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {1: afterNth^#(N, XS) -> snd^#(splitAt(N, XS))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {1: afterNth^#(N, XS) -> snd^#(splitAt(N, XS))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 3:{11}: subsumed
                                  ---------------------
                                  
                                  This path is subsumed by the proof of paths 3:{11}->8:{5}.
                                
                                * Path 3:{11}->8:{5}: YES(O(1),O(1))
                                  ----------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs: {take^#(N, XS) -> fst^#(splitAt(N, XS))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: take^#(N, XS) -> fst^#(splitAt(N, XS))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {1: take^#(N, XS) -> fst^#(splitAt(N, XS))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {1: take^#(N, XS) -> fst^#(splitAt(N, XS))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 2:{12}: subsumed
                                  ---------------------
                                  
                                  This path is subsumed by the proof of paths 2:{12}->7:{6}.
                                
                                * Path 2:{12}->7:{6}: YES(O(1),O(1))
                                  ----------------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak DPs: {sel^#(N, XS) -> head^#(afterNth(N, XS))}
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the the dependency-graph
                                    
                                      1: sel^#(N, XS) -> head^#(afterNth(N, XS))
                                      
                                    
                                    together with the congruence-graph
                                    
                                      ->1:{1}                                                     Weak SCC
                                      
                                      
                                      Here dependency-pairs are as follows:
                                      
                                      WeakDPs DPs:
                                        {1: sel^#(N, XS) -> head^#(afterNth(N, XS))}
                                    
                                    The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                                    
                                      {1: sel^#(N, XS) -> head^#(afterNth(N, XS))}
                                    
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded
                                
                                * Path 1:{13}: YES(O(1),O(1))
                                  ---------------------------
                                  
                                  We consider the following Problem:
                                  
                                    Weak Trs:
                                      {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                       , activate(n__s(X)) -> s(activate(X))
                                       , activate(X) -> X
                                       , snd(pair(XS, YS)) -> YS
                                       , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                       , afterNth(N, XS) -> snd(splitAt(N, XS))
                                       , splitAt(0(), XS) -> pair(nil(), XS)
                                       , natsFrom(X) -> n__natsFrom(X)
                                       , s(X) -> n__s(X)}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                  
                                  Certificate: YES(O(1),O(1))
                                  
                                  Proof:
                                    We consider the following Problem:
                                    
                                      Weak Trs:
                                        {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                         , activate(n__s(X)) -> s(activate(X))
                                         , activate(X) -> X
                                         , snd(pair(XS, YS)) -> YS
                                         , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                         , afterNth(N, XS) -> snd(splitAt(N, XS))
                                         , splitAt(0(), XS) -> pair(nil(), XS)
                                         , natsFrom(X) -> n__natsFrom(X)
                                         , s(X) -> n__s(X)}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                    
                                    Certificate: YES(O(1),O(1))
                                    
                                    Proof:
                                      We consider the following Problem:
                                      
                                        Weak Trs:
                                          {  activate(n__natsFrom(X)) -> natsFrom(activate(X))
                                           , activate(n__s(X)) -> s(activate(X))
                                           , activate(X) -> X
                                           , snd(pair(XS, YS)) -> YS
                                           , natsFrom(N) -> cons(N, n__natsFrom(n__s(N)))
                                           , afterNth(N, XS) -> snd(splitAt(N, XS))
                                           , splitAt(0(), XS) -> pair(nil(), XS)
                                           , natsFrom(X) -> n__natsFrom(X)
                                           , s(X) -> n__s(X)}
                                        StartTerms: basic terms
                                        Strategy: innermost
                                      
                                      Certificate: YES(O(1),O(1))
                                      
                                      Proof:
                                        No rule is usable.
                                        
                                        We consider the following Problem:
                                        
                                          StartTerms: basic terms
                                          Strategy: innermost
                                        
                                        Certificate: YES(O(1),O(1))
                                        
                                        Proof:
                                          Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))