(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(terms(N)) → mark(cons(recip(sqr(N)), terms(s(N))))
active(sqr(0)) → mark(0)
active(sqr(s(X))) → mark(s(add(sqr(X), dbl(X))))
active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(half(0)) → mark(0)
active(half(s(0))) → mark(0)
active(half(s(s(X)))) → mark(s(half(X)))
active(half(dbl(X))) → mark(X)
mark(terms(X)) → active(terms(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(recip(X)) → active(recip(mark(X)))
mark(sqr(X)) → active(sqr(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(dbl(X)) → active(dbl(mark(X)))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(half(X)) → active(half(mark(X)))
terms(mark(X)) → terms(X)
terms(active(X)) → terms(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
recip(mark(X)) → recip(X)
recip(active(X)) → recip(X)
sqr(mark(X)) → sqr(X)
sqr(active(X)) → sqr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
half(mark(X)) → half(X)
half(active(X)) → half(X)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(terms(z0)) → mark(cons(recip(sqr(z0)), terms(s(z0))))
active(sqr(0)) → mark(0)
active(sqr(s(z0))) → mark(s(add(sqr(z0), dbl(z0))))
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(add(0, z0)) → mark(z0)
active(add(s(z0), z1)) → mark(s(add(z0, z1)))
active(first(0, z0)) → mark(nil)
active(first(s(z0), cons(z1, z2))) → mark(cons(z1, first(z0, z2)))
active(half(0)) → mark(0)
active(half(s(0))) → mark(0)
active(half(s(s(z0)))) → mark(s(half(z0)))
active(half(dbl(z0))) → mark(z0)
mark(terms(z0)) → active(terms(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(recip(z0)) → active(recip(mark(z0)))
mark(sqr(z0)) → active(sqr(mark(z0)))
mark(s(z0)) → active(s(mark(z0)))
mark(0) → active(0)
mark(add(z0, z1)) → active(add(mark(z0), mark(z1)))
mark(dbl(z0)) → active(dbl(mark(z0)))
mark(first(z0, z1)) → active(first(mark(z0), mark(z1)))
mark(nil) → active(nil)
mark(half(z0)) → active(half(mark(z0)))
terms(mark(z0)) → terms(z0)
terms(active(z0)) → terms(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
recip(mark(z0)) → recip(z0)
recip(active(z0)) → recip(z0)
sqr(mark(z0)) → sqr(z0)
sqr(active(z0)) → sqr(z0)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
add(mark(z0), z1) → add(z0, z1)
add(z0, mark(z1)) → add(z0, z1)
add(active(z0), z1) → add(z0, z1)
add(z0, active(z1)) → add(z0, z1)
dbl(mark(z0)) → dbl(z0)
dbl(active(z0)) → dbl(z0)
first(mark(z0), z1) → first(z0, z1)
first(z0, mark(z1)) → first(z0, z1)
first(active(z0), z1) → first(z0, z1)
first(z0, active(z1)) → first(z0, z1)
half(mark(z0)) → half(z0)
half(active(z0)) → half(z0)
Tuples:

ACTIVE(terms(z0)) → c(MARK(cons(recip(sqr(z0)), terms(s(z0)))), CONS(recip(sqr(z0)), terms(s(z0))), RECIP(sqr(z0)), SQR(z0), TERMS(s(z0)), S(z0))
ACTIVE(sqr(0)) → c1(MARK(0))
ACTIVE(sqr(s(z0))) → c2(MARK(s(add(sqr(z0), dbl(z0)))), S(add(sqr(z0), dbl(z0))), ADD(sqr(z0), dbl(z0)), SQR(z0), DBL(z0))
ACTIVE(dbl(0)) → c3(MARK(0))
ACTIVE(dbl(s(z0))) → c4(MARK(s(s(dbl(z0)))), S(s(dbl(z0))), S(dbl(z0)), DBL(z0))
ACTIVE(add(0, z0)) → c5(MARK(z0))
ACTIVE(add(s(z0), z1)) → c6(MARK(s(add(z0, z1))), S(add(z0, z1)), ADD(z0, z1))
ACTIVE(first(0, z0)) → c7(MARK(nil))
ACTIVE(first(s(z0), cons(z1, z2))) → c8(MARK(cons(z1, first(z0, z2))), CONS(z1, first(z0, z2)), FIRST(z0, z2))
ACTIVE(half(0)) → c9(MARK(0))
ACTIVE(half(s(0))) → c10(MARK(0))
ACTIVE(half(s(s(z0)))) → c11(MARK(s(half(z0))), S(half(z0)), HALF(z0))
ACTIVE(half(dbl(z0))) → c12(MARK(z0))
MARK(terms(z0)) → c13(ACTIVE(terms(mark(z0))), TERMS(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c14(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(recip(z0)) → c15(ACTIVE(recip(mark(z0))), RECIP(mark(z0)), MARK(z0))
MARK(sqr(z0)) → c16(ACTIVE(sqr(mark(z0))), SQR(mark(z0)), MARK(z0))
MARK(s(z0)) → c17(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(0) → c18(ACTIVE(0))
MARK(add(z0, z1)) → c19(ACTIVE(add(mark(z0), mark(z1))), ADD(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(dbl(z0)) → c20(ACTIVE(dbl(mark(z0))), DBL(mark(z0)), MARK(z0))
MARK(first(z0, z1)) → c21(ACTIVE(first(mark(z0), mark(z1))), FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(nil) → c22(ACTIVE(nil))
MARK(half(z0)) → c23(ACTIVE(half(mark(z0))), HALF(mark(z0)), MARK(z0))
TERMS(mark(z0)) → c24(TERMS(z0))
TERMS(active(z0)) → c25(TERMS(z0))
CONS(mark(z0), z1) → c26(CONS(z0, z1))
CONS(z0, mark(z1)) → c27(CONS(z0, z1))
CONS(active(z0), z1) → c28(CONS(z0, z1))
CONS(z0, active(z1)) → c29(CONS(z0, z1))
RECIP(mark(z0)) → c30(RECIP(z0))
RECIP(active(z0)) → c31(RECIP(z0))
SQR(mark(z0)) → c32(SQR(z0))
SQR(active(z0)) → c33(SQR(z0))
S(mark(z0)) → c34(S(z0))
S(active(z0)) → c35(S(z0))
ADD(mark(z0), z1) → c36(ADD(z0, z1))
ADD(z0, mark(z1)) → c37(ADD(z0, z1))
ADD(active(z0), z1) → c38(ADD(z0, z1))
ADD(z0, active(z1)) → c39(ADD(z0, z1))
DBL(mark(z0)) → c40(DBL(z0))
DBL(active(z0)) → c41(DBL(z0))
FIRST(mark(z0), z1) → c42(FIRST(z0, z1))
FIRST(z0, mark(z1)) → c43(FIRST(z0, z1))
FIRST(active(z0), z1) → c44(FIRST(z0, z1))
FIRST(z0, active(z1)) → c45(FIRST(z0, z1))
HALF(mark(z0)) → c46(HALF(z0))
HALF(active(z0)) → c47(HALF(z0))
S tuples:

ACTIVE(terms(z0)) → c(MARK(cons(recip(sqr(z0)), terms(s(z0)))), CONS(recip(sqr(z0)), terms(s(z0))), RECIP(sqr(z0)), SQR(z0), TERMS(s(z0)), S(z0))
ACTIVE(sqr(0)) → c1(MARK(0))
ACTIVE(sqr(s(z0))) → c2(MARK(s(add(sqr(z0), dbl(z0)))), S(add(sqr(z0), dbl(z0))), ADD(sqr(z0), dbl(z0)), SQR(z0), DBL(z0))
ACTIVE(dbl(0)) → c3(MARK(0))
ACTIVE(dbl(s(z0))) → c4(MARK(s(s(dbl(z0)))), S(s(dbl(z0))), S(dbl(z0)), DBL(z0))
ACTIVE(add(0, z0)) → c5(MARK(z0))
ACTIVE(add(s(z0), z1)) → c6(MARK(s(add(z0, z1))), S(add(z0, z1)), ADD(z0, z1))
ACTIVE(first(0, z0)) → c7(MARK(nil))
ACTIVE(first(s(z0), cons(z1, z2))) → c8(MARK(cons(z1, first(z0, z2))), CONS(z1, first(z0, z2)), FIRST(z0, z2))
ACTIVE(half(0)) → c9(MARK(0))
ACTIVE(half(s(0))) → c10(MARK(0))
ACTIVE(half(s(s(z0)))) → c11(MARK(s(half(z0))), S(half(z0)), HALF(z0))
ACTIVE(half(dbl(z0))) → c12(MARK(z0))
MARK(terms(z0)) → c13(ACTIVE(terms(mark(z0))), TERMS(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c14(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(recip(z0)) → c15(ACTIVE(recip(mark(z0))), RECIP(mark(z0)), MARK(z0))
MARK(sqr(z0)) → c16(ACTIVE(sqr(mark(z0))), SQR(mark(z0)), MARK(z0))
MARK(s(z0)) → c17(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(0) → c18(ACTIVE(0))
MARK(add(z0, z1)) → c19(ACTIVE(add(mark(z0), mark(z1))), ADD(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(dbl(z0)) → c20(ACTIVE(dbl(mark(z0))), DBL(mark(z0)), MARK(z0))
MARK(first(z0, z1)) → c21(ACTIVE(first(mark(z0), mark(z1))), FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(nil) → c22(ACTIVE(nil))
MARK(half(z0)) → c23(ACTIVE(half(mark(z0))), HALF(mark(z0)), MARK(z0))
TERMS(mark(z0)) → c24(TERMS(z0))
TERMS(active(z0)) → c25(TERMS(z0))
CONS(mark(z0), z1) → c26(CONS(z0, z1))
CONS(z0, mark(z1)) → c27(CONS(z0, z1))
CONS(active(z0), z1) → c28(CONS(z0, z1))
CONS(z0, active(z1)) → c29(CONS(z0, z1))
RECIP(mark(z0)) → c30(RECIP(z0))
RECIP(active(z0)) → c31(RECIP(z0))
SQR(mark(z0)) → c32(SQR(z0))
SQR(active(z0)) → c33(SQR(z0))
S(mark(z0)) → c34(S(z0))
S(active(z0)) → c35(S(z0))
ADD(mark(z0), z1) → c36(ADD(z0, z1))
ADD(z0, mark(z1)) → c37(ADD(z0, z1))
ADD(active(z0), z1) → c38(ADD(z0, z1))
ADD(z0, active(z1)) → c39(ADD(z0, z1))
DBL(mark(z0)) → c40(DBL(z0))
DBL(active(z0)) → c41(DBL(z0))
FIRST(mark(z0), z1) → c42(FIRST(z0, z1))
FIRST(z0, mark(z1)) → c43(FIRST(z0, z1))
FIRST(active(z0), z1) → c44(FIRST(z0, z1))
FIRST(z0, active(z1)) → c45(FIRST(z0, z1))
HALF(mark(z0)) → c46(HALF(z0))
HALF(active(z0)) → c47(HALF(z0))
K tuples:none
Defined Rule Symbols:

active, mark, terms, cons, recip, sqr, s, add, dbl, first, half

Defined Pair Symbols:

ACTIVE, MARK, TERMS, CONS, RECIP, SQR, S, ADD, DBL, FIRST, HALF

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c46, c47

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

ACTIVE(terms(z0)) → c(MARK(cons(recip(sqr(z0)), terms(s(z0)))), CONS(recip(sqr(z0)), terms(s(z0))), RECIP(sqr(z0)), SQR(z0), TERMS(s(z0)), S(z0))
ACTIVE(sqr(0)) → c1(MARK(0))
ACTIVE(sqr(s(z0))) → c2(MARK(s(add(sqr(z0), dbl(z0)))), S(add(sqr(z0), dbl(z0))), ADD(sqr(z0), dbl(z0)), SQR(z0), DBL(z0))
ACTIVE(dbl(0)) → c3(MARK(0))
ACTIVE(dbl(s(z0))) → c4(MARK(s(s(dbl(z0)))), S(s(dbl(z0))), S(dbl(z0)), DBL(z0))
ACTIVE(add(0, z0)) → c5(MARK(z0))
ACTIVE(add(s(z0), z1)) → c6(MARK(s(add(z0, z1))), S(add(z0, z1)), ADD(z0, z1))
ACTIVE(first(0, z0)) → c7(MARK(nil))
ACTIVE(first(s(z0), cons(z1, z2))) → c8(MARK(cons(z1, first(z0, z2))), CONS(z1, first(z0, z2)), FIRST(z0, z2))
ACTIVE(half(0)) → c9(MARK(0))
ACTIVE(half(s(0))) → c10(MARK(0))
ACTIVE(half(s(s(z0)))) → c11(MARK(s(half(z0))), S(half(z0)), HALF(z0))
ACTIVE(half(dbl(z0))) → c12(MARK(z0))
MARK(terms(z0)) → c13(ACTIVE(terms(mark(z0))), TERMS(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c14(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(recip(z0)) → c15(ACTIVE(recip(mark(z0))), RECIP(mark(z0)), MARK(z0))
MARK(sqr(z0)) → c16(ACTIVE(sqr(mark(z0))), SQR(mark(z0)), MARK(z0))
MARK(s(z0)) → c17(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(add(z0, z1)) → c19(ACTIVE(add(mark(z0), mark(z1))), ADD(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(dbl(z0)) → c20(ACTIVE(dbl(mark(z0))), DBL(mark(z0)), MARK(z0))
MARK(first(z0, z1)) → c21(ACTIVE(first(mark(z0), mark(z1))), FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(half(z0)) → c23(ACTIVE(half(mark(z0))), HALF(mark(z0)), MARK(z0))
TERMS(mark(z0)) → c24(TERMS(z0))
TERMS(active(z0)) → c25(TERMS(z0))
CONS(mark(z0), z1) → c26(CONS(z0, z1))
CONS(z0, mark(z1)) → c27(CONS(z0, z1))
CONS(active(z0), z1) → c28(CONS(z0, z1))
CONS(z0, active(z1)) → c29(CONS(z0, z1))
RECIP(mark(z0)) → c30(RECIP(z0))
RECIP(active(z0)) → c31(RECIP(z0))
SQR(mark(z0)) → c32(SQR(z0))
SQR(active(z0)) → c33(SQR(z0))
S(mark(z0)) → c34(S(z0))
S(active(z0)) → c35(S(z0))
ADD(mark(z0), z1) → c36(ADD(z0, z1))
ADD(z0, mark(z1)) → c37(ADD(z0, z1))
ADD(active(z0), z1) → c38(ADD(z0, z1))
ADD(z0, active(z1)) → c39(ADD(z0, z1))
DBL(mark(z0)) → c40(DBL(z0))
DBL(active(z0)) → c41(DBL(z0))
FIRST(mark(z0), z1) → c42(FIRST(z0, z1))
FIRST(z0, mark(z1)) → c43(FIRST(z0, z1))
FIRST(active(z0), z1) → c44(FIRST(z0, z1))
FIRST(z0, active(z1)) → c45(FIRST(z0, z1))
HALF(mark(z0)) → c46(HALF(z0))
HALF(active(z0)) → c47(HALF(z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(terms(z0)) → mark(cons(recip(sqr(z0)), terms(s(z0))))
active(sqr(0)) → mark(0)
active(sqr(s(z0))) → mark(s(add(sqr(z0), dbl(z0))))
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(add(0, z0)) → mark(z0)
active(add(s(z0), z1)) → mark(s(add(z0, z1)))
active(first(0, z0)) → mark(nil)
active(first(s(z0), cons(z1, z2))) → mark(cons(z1, first(z0, z2)))
active(half(0)) → mark(0)
active(half(s(0))) → mark(0)
active(half(s(s(z0)))) → mark(s(half(z0)))
active(half(dbl(z0))) → mark(z0)
mark(terms(z0)) → active(terms(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(recip(z0)) → active(recip(mark(z0)))
mark(sqr(z0)) → active(sqr(mark(z0)))
mark(s(z0)) → active(s(mark(z0)))
mark(0) → active(0)
mark(add(z0, z1)) → active(add(mark(z0), mark(z1)))
mark(dbl(z0)) → active(dbl(mark(z0)))
mark(first(z0, z1)) → active(first(mark(z0), mark(z1)))
mark(nil) → active(nil)
mark(half(z0)) → active(half(mark(z0)))
terms(mark(z0)) → terms(z0)
terms(active(z0)) → terms(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
recip(mark(z0)) → recip(z0)
recip(active(z0)) → recip(z0)
sqr(mark(z0)) → sqr(z0)
sqr(active(z0)) → sqr(z0)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
add(mark(z0), z1) → add(z0, z1)
add(z0, mark(z1)) → add(z0, z1)
add(active(z0), z1) → add(z0, z1)
add(z0, active(z1)) → add(z0, z1)
dbl(mark(z0)) → dbl(z0)
dbl(active(z0)) → dbl(z0)
first(mark(z0), z1) → first(z0, z1)
first(z0, mark(z1)) → first(z0, z1)
first(active(z0), z1) → first(z0, z1)
first(z0, active(z1)) → first(z0, z1)
half(mark(z0)) → half(z0)
half(active(z0)) → half(z0)
Tuples:

MARK(0) → c18(ACTIVE(0))
MARK(nil) → c22(ACTIVE(nil))
S tuples:

MARK(0) → c18(ACTIVE(0))
MARK(nil) → c22(ACTIVE(nil))
K tuples:none
Defined Rule Symbols:

active, mark, terms, cons, recip, sqr, s, add, dbl, first, half

Defined Pair Symbols:

MARK

Compound Symbols:

c18, c22

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

MARK(nil) → c22(ACTIVE(nil))
MARK(0) → c18(ACTIVE(0))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(terms(z0)) → mark(cons(recip(sqr(z0)), terms(s(z0))))
active(sqr(0)) → mark(0)
active(sqr(s(z0))) → mark(s(add(sqr(z0), dbl(z0))))
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(add(0, z0)) → mark(z0)
active(add(s(z0), z1)) → mark(s(add(z0, z1)))
active(first(0, z0)) → mark(nil)
active(first(s(z0), cons(z1, z2))) → mark(cons(z1, first(z0, z2)))
active(half(0)) → mark(0)
active(half(s(0))) → mark(0)
active(half(s(s(z0)))) → mark(s(half(z0)))
active(half(dbl(z0))) → mark(z0)
mark(terms(z0)) → active(terms(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(recip(z0)) → active(recip(mark(z0)))
mark(sqr(z0)) → active(sqr(mark(z0)))
mark(s(z0)) → active(s(mark(z0)))
mark(0) → active(0)
mark(add(z0, z1)) → active(add(mark(z0), mark(z1)))
mark(dbl(z0)) → active(dbl(mark(z0)))
mark(first(z0, z1)) → active(first(mark(z0), mark(z1)))
mark(nil) → active(nil)
mark(half(z0)) → active(half(mark(z0)))
terms(mark(z0)) → terms(z0)
terms(active(z0)) → terms(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
recip(mark(z0)) → recip(z0)
recip(active(z0)) → recip(z0)
sqr(mark(z0)) → sqr(z0)
sqr(active(z0)) → sqr(z0)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
add(mark(z0), z1) → add(z0, z1)
add(z0, mark(z1)) → add(z0, z1)
add(active(z0), z1) → add(z0, z1)
add(z0, active(z1)) → add(z0, z1)
dbl(mark(z0)) → dbl(z0)
dbl(active(z0)) → dbl(z0)
first(mark(z0), z1) → first(z0, z1)
first(z0, mark(z1)) → first(z0, z1)
first(active(z0), z1) → first(z0, z1)
first(z0, active(z1)) → first(z0, z1)
half(mark(z0)) → half(z0)
half(active(z0)) → half(z0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

active, mark, terms, cons, recip, sqr, s, add, dbl, first, half

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))